HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We study the weak call-by-value λ-calculus as a model for computational complexity theory and establish the natural measures for time and space -the number of beta-reductions and the size of the largest term in a computation -as reasonable measures with respect to the invariance thesis of Slot and van Emde Boas [STOC 84]. More precisely, we show that, using those measures, Turing machines and the weak call-by-value λ-calculus can simulate each other within a polynomial overhead in time and a constant factor overhead in space for all computations that terminate in (encodings) of "true" or "false". We consider this result as a solution to the long-standing open problem, explicitly posed by Accattoli [ENTCS 18], of whether the natural measures for time and space of the λ-calculus are reasonable, at least in case of weak call-by-value evaluation.Our proof relies on a hybrid of two simulation strategies of reductions in the weak call-by-value λ-calculus by Turing machines, both of which are insufficient if taken alone. The first strategy is the most naive one in the sense that a reduction sequence is simulated precisely as given by the reduction rules; in particular, all substitutions are executed immediately. This simulation runs within a constant overhead in space, but the overhead in time might be exponential. The second strategy is heap-based and relies on structure sharing, similar to existing compilers of eager functional languages. This strategy only has a polynomial overhead in time, but the space consumption might require an additional factor of log n, which is essentially due to the size of the pointers required for this strategy. Our main contribution is the construction and verification of a space-aware interleaving of the two strategies, which is shown to yield both a constant overhead in space and a polynomial overhead in time. ACM Subject Classification Theory of computation → Computational complexity and cryptography; Mathematics of computing → Lambda calculusKeywords and phrases invariance thesis, lambda calculus, weak call-by-value reduction, time and space complexity, abstract machines Supplement Material A Coq formalisation of the results in Section 2 and Section 3 is available at https://ps.uni-saarland.de/extras/wcbv-reasonable.
We formally verify an abstract machine for a call-by-value λ-calculus with de Bruijn terms, simple substitution, and small-step semantics. We follow a stepwise refinement approach starting with a naive stack machine with substitution. We then refine to a machine with closures, and finally to a machine with a heap providing structure sharing for closures. We prove the correctness of the three refinement steps with compositional small-step bottom-up simulations. There is an accompanying Coq development verifying all results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.