Invasive species are a major threat to biodiversity when dominant within their newly established habitat. The globally distributed Argentine ant Linepithema humile has been reported to break the trade-off between interference and exploitative competition, achieve high population densities, and overpower nests of many endemic ant species. We have used the sensitivity of the Argentine ant to the synthetic trail pheromone (Z)-9-hexadecanal to investigate species interactions for the first time. We predicted that disrupting Argentine ant trail following behaviour would reduce their competitive ability and create an opportunity for three other resident species to increase their foraging success. Argentine ant success in the control was reduced with increasing pheromone concentration, as predicted, but interactions varied among competing resident species. These behavioural variations provide an explanation for observed differences in foraging success of the competing resident species and how much each of these individual competitors can increase their foraging if the competitive ability of the dominant invader is decreased. The mechanism for the observed increase in resource acquisition of resident species appears to be a decrease in aggressive behaviour displayed by the Argentine ant, which may create an opportunity for other resident species to forage more successfully. Our demonstration of species interactions with trail pheromone disruption is the first known case of reduced dominance under a pheromone treatment in ants.
Our results showed that pheromone dispensers can significantly reduce Argentine ant foraging in grapevines if they are positioned appropriately. This technique could potentially reduce the abundance of associated mealybugs and potentially attendant virus vectoring areawide.
Toxicity and the utilization of venom are essential features in the ecology of many animal species and have been hypothesized to be important factors contributing to the assembly of communities through competitive interactions. Ants of the genus Monomorium utilize a variety of venom compositions, which have been reported to give them a competitive advantage. Here, we investigate two pairs of Monomorium species, which differ in the structural compositions of their venom and their co-occurrence patterns with the invasive Argentine ant. We looked at the effects of Monomorium venom toxicity, venom utilization, and aggressive physical interactions on Monomorium and Argentine ant survival rates during arena trials. The venom toxicity of the two species co-occurring with the invasive Argentine ants was found to be significantly higher than the toxicity of the two species which do not. There was no correlation between venom toxicity and Monomorium survival; however, three of the four Monomorium species displayed significant variability in their venom usage which was associated with the number of Argentine ant workers encountered during trials. Average Monomorium mortality varied significantly between species, and in Monomorium smithii and Monomorium antipodum, aggressive interactions with Argentine ants had a significant negative effect on their mortality. Our study demonstrates that different factors and strategies can contribute to the ability of a species to withstand the pressure of a dominant invader at high abundance, and venom chemistry appears to be only one of several strategies utilized.
<p>The success of invasive species in their introduced range is often influenced by interactions with resident species communities. Chemical communication is one the factors which contributes to a variety of aspects of a species life cycle, ranging from mating, to food localization and interactions with members of the same and other species. In my thesis, I investigate the effects of venoms and semiochemicals on interactions between the invasive Argentine ant (Linepethima humile) with other resident ant species and demonstrate how pheromones can potentially be utilized as an area wide control mechanism of this species, by disrupting their foraging success. I studied the effects of venom composition, their toxicity and utilization on the outcome of aggressive interactions between the Argentine ant and the four Monomorium species in New Zealand occurring. The toxicity of the venom of the two species co-occurring with Argentine ants was significantly higher than the toxicity of the species which do not. However, no correlation between venom toxicity and Monomorium survival was found. For M. antipodum a significant relationship between venom utilization and its mortality was found, indicating that the way venom is used might be an important aspect of these interactions. Physical Aggression between Monomorium and Argentine ants also had strong effects on Monomorium worker mortality, which provided evidence that a variety of factors and strategies contribute to the ability of interacting organisms to withstand the pressure of a dominant invader at high abundance. I conducted bioassays with food sources and synthetic trail pheromones, providing a proof of concept on disrupting the foraging ability of Argentine ants. Other resident species benefited from the reduced success of Argentine ants, but to a varying degree. Behavioural variations between the resident species provided an explanation for observed differences in foraging success and how much each of these individual competitors was able to increase their foraging. The mechanism for the observed increase in resource acquisition of resident species appeared to be a decrease in aggressive behaviour displayed by Argentine ants. I expanded the usage of the synthetic pheromone to a commercial vineyard, were Argentine ants can have negative effects on crop development by dispersing and tending to homopteran pest species. Argentine ants’ access to the crop canopy could be significantly reduced by placing pheromone dispensers at the base of the vine plant, while dispensers in the plant canopy had little effect on Argentine ant numbers. Doubling the amount of pheromone did not result in an additional reduction of ant activity. Lastly incorporating the knowledge gained in the previous chapter, I extended the application of the pheromone to a large field trial over a three month period. Argentine ant activity and foraging success was significantly supressed compared to untreated control plots, providing evidence that this form of large scale application might be a possible way to control large invasive ant populations by disrupting their trail following and foraging behaviour for a prolonged period of time. While initial calculations have suggested that the treatment is currently not feasible (13.3 US$/mg/ha), I found a significant reduction in body fat in workers collected from treated plots compared with untreated plots, suggesting adverse effects on nest fitness. My findings provide new insights into chemical communication between invasive and resident species, support existing dominance hierarchy models in ant populations, and help to establish a target specific potential management technique of wide-spread invasive ant species.</p>
Ant species like Pheidole megacephala (F.), Solenopsis invicta (Buren), and the Argentine ant, Linepithema humile (Mayr), have repeatedly been reported to be strongly associated with honeydew-producing arthropods like aphids, scale insects, and mealybugs, effectively protecting them from biological control agents like parasitoids. Here we report the results of a successful trial using pheromone dispensers to suppress Argentine ant activity over large sections in a commercial vineyard over a period of two months and preventing ant access into and foraging within the vine canopy. We found Argentine ant activity to be significantly reduced in pheromone-treated plots for the duration of the trial period compared with control plots. Our results showed a significant reduction in the numbers of Argentine ant workers recruited to randomly placed food resources within treated plots compared with untreated plots. Furthermore, spatial distribution of Argentine ants alongside transects in untreated plots remained relatively continuous, while increasing sharply beyond the borders of treated plots. Lastly, we measured the body fat content of workers and found a significant reduction in fat among workers from treated plots compared with untreated plots, suggesting an adverse effects on nest fitness. Additionally, we provide an initial assessment of the feasibility of the presented approach. Our results showed that it is possible to control Argentine ant, preventing them access to and foraging within the vine canopy, thereby reducing Argentine ants' access to honeydew.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.