When planning interventions to limit the spread of Covid-, the current state of knowledge about the disease and specific characteristics of the population need to be considered. Simulations can facilitate policy making as they take prevailing circumstances into account. Moreover, they allow for the investigation of the potential e ects of di erent interventions using an artificial population. Agent-based Social Simulation (ABSS) is argued to be particularly useful as it can capture the behavior of and interactions between individuals. We performed a systematic literature review and identified articles that describe ABSS of Covid-transmission processes. Our review showed that ABSS is widely used for investigating the spread of Covid-. Existing models are very heterogeneous with respect to their purpose, the number of simulated individuals, and the modeled geographical region, as well as how they model transmission dynamics, disease states, human behavior, and interventions. To this end, a discrepancy can be identified between the needs of policy makers and what is implemented by the simulation models. This also includes how thoroughly the models consider and represent the real world, e.g. in terms of factors that a ect the transmission probability or how humans make decisions. Shortcomings were also identified in the transparency of the presented models, e.g. in terms of documentation or availability, as well as in their validation, which might limit their suitability for supporting decision-making processes. We discuss how these issues can be mitigated to further establish ABSS as a powerful tool for crisis management.
During the COVID-19 crisis there have been many difficult decisions governments and other decision makers had to make. E.g. do we go for a total lock down or keep schools open? How many people and which people should be tested? Although there are many good models from e.g. epidemiologists on the spread of the virus under certain conditions, these models do not directly translate into the interventions that can be taken by government. Neither can these models contribute to understand the economic and/or social consequences of the interventions. However, effective and sustainable solutions need to take into account this combination of factors. In this paper, we propose an agent-based social simulation tool, ASSOCC, that supports decision makers understand possible consequences of policy interventions, but exploring the combined social, health and economic consequences of these interventions.
The deployment of Internet of Things (IoT) applications is complex since many quality characteristics should be taken into account, for example, performance, reliability, and security. In this study, we investigate to what extent the current edge computing simulators support the analysis of qualities that are relevant to IoT architects who are designing an IoT system. We first identify the quality characteristics and metrics that can be evaluated through simulation. Then, we study the available simulators in order to assess which of the identified qualities they support. The results show that while several simulation tools for edge computing have been proposed, they focus on a few qualities, such as time behavior and resource utilization. Most of the identified qualities are not considered and we suggest future directions for further investigation to provide appropriate support for IoT architects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.