6G networks are expected to meet ambitious performance parameters of coverage, data rates, latency, etc. To fulfill these objectives, the implementation of non-GEO satellite constellations is expected to improve coverage, capacity, resilience, etc. as well as the implementation of new advanced network virtualization algorithms in order to optimize network resources. However, the integration of these technologies represents new challenges, such as the execution of network slicing schemes in highly dynamic environments and network awareness requirements. In this regard, Software Defined Networking (SDN) is seen as a required 6G technology enabler in order to provide better satellite-terrestrial integration approaches and Virtual Network (VN) implementation solutions. In this paper, we present an experimental testbed for non-GEO satellite constellations integration solution and VNE algorithms implementation adapted to highly variable network conditions that builds upon SDN. A laboratory testbed has been developed and validated, consisting in SDN-based satellite-terrestrial dynamic substrate network emulated in Mininet, a Ryu SDN controller with an End-to-End (E2E) Traffic Engineering (TE) application for the VNs establishment and a Virtual Network Embedding (VNE) algorithm implemented in Matlab.
SummarySatellite networks are expected to be an integral part of 5G service deployment. One compelling use case is mobile backhauling, where the exploitation of a satellite component can improve the reach, robustness, and economics of 5G rollout. The envisaged availability of new satellite capacity, together with the development of better integration approaches for the provisioning and operation of the satellite component in a more flexible, agile, and cost‐effective manner than done today, are expected to revamp such use case within the 5G ecosystem. In this context, sustained in the architectural designs proposed within H2020 VITAL research project, this paper presents an experimental proof of concept (PoC) of a satellite‐terrestrial integration solution that builds upon software‐defined networking (SDN) technologies for the realization of end‐to‐end traffic engineering (E2E TE) in mobile backhauling networks with a satellite component. A laboratory test bed has been developed and validated, consisting of a small‐scale private mobile network with a backhaul setting that combines Ethernet‐wired links, a satellite link emulator (OpenSAND), OpenFlow switches, and an OpenFlow controller running the network application for E2E TE. Provided results show the operation of a E2E TE application able to enforce different traffic routing and path failure restoration policies as well as the performance impact that it has on the mobile network connectivity services.
Abstract-Resilience and high availability are considered as essential requirements in 5G networks. To fullfil these requirements, the integration of a satellite component within mobile backhaul networks arises as a compelling proposition to provide backup connectivity to critical cell sites and divert traffic from congested areas so that a limited capacity in their terrestrial links could be supplemented during peak-time or even replaced in case of total/partial failure or maintenance. This is especially of interest for public protection and disaster relief (PPDR) communications in remote/rural areas that might require the fast deployment of nework capacity as well as in distressed areas where the terrestrial backhaul infrastructure might have suffered damages. This paper first describes an architectural framework that enables the integration and management of the satellite capacity as a constituent part of a Software Defined Networking (SDN) -based traffic engineered mobile backhaul network. Then, a SDN-based Traffic Engineering (TE) application is proposed to manage some amount of dynamically steerable satellite capacity provisioned for resilience purposes to maximize a network utility function under both failure and nonfailure conditions in the terrestrial links. Numerical results are presented to assess the benefits of the proposed TE application and its performance is compared to that of a traditional overflow solution.
The unique wide-scale geographical coverage offered by satellite networks, coupled with its inherent broadcast/multicast capabilities and highly reliable connectivity, anticipates new opportunities for the integration of the satellite component into the 5G ecosystem. One of the most compelling scenarios is mobile backhauling, where satellite capacity can be used to complement the terrestrial backhauling infrastructure, not only in hard to reach areas, but also for more efficient traffic delivery to radio access network (RAN) nodes, increased resiliency and better support for fast, temporary cell deployments and moving cells. In this context, this paper proposes a model for the analysis of capacity and traffic management strategies in hybrid satellite-terrestrial mobile backhauling networks that rely on\ud Software Defined Networking (SDN) for fine-grained traffic steering. Numerical results are provided to assess the capacity gains that can be achieved when the satellite backhaul capacity is used for traffic overflow, taking into account the placement of the satellite capacity at different traffic aggregation levels and the spatial correlation of the traffic demand.Peer ReviewedPostprint (published version
-Resilience and high availability are being considered as essential requirements in 5G networks. To fullfil these requirements, the integration of a satellite component within mobile backhaul networks is regarded as a compelling proposition to provide backup connectivity to critical cell sites and divert traffic from congested areas so that a limited capacity in their terrestrial links could be supplemented during peak-time or even replaced in case of total/partial failure or maintenance. Sustained in an architectural framework that enables the integration and management of the satellite capacity as a constituent part of a SDN-based traffic engineered mobile backhaul network, this paper develops and assesses a traffic distribution strategy that exploits the dynamically steerable satellite capacity provisioned for resilience purposes to maximize a network utility function under both failure and non-failure conditions in the terrestrial links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.