We derive a posteriori error estimates for the (stopped) weak Euler method to discretize SDE systems which emerge from the probabilistic reformulation of elliptic and parabolic (initial) boundary value problems. The a posteriori estimate exploits the use of a scaled random walk to represent noise, and distinguishes between realizations in the interior of the domain and those close to the boundary. We verify an optimal rate of (weak) convergence for the a posteriori error estimate on deterministic meshes. Based on this estimate, we then set up an adaptive method which automatically selects local deterministic mesh sizes, and prove its optimal convergence in terms of given tolerances. Provided with this theoretical backup, and since corresponding Monte-Carlo based realizations are simple to implement, these methods may serve to efficiently approximate solutions of high-dimensional (initial-)boundary value problems.
We develop an adaptive algorithm for large SDE systems, which automatically selects (quasi-)deterministic time steps for the semi-implicit Euler method, based on an a posteriori weak error estimate. Main tools to construct the a posteriori estimator are the representation of the weak approximation error via Kolmogorov’s backward equation, a priori bounds for its solution and the Clark–Ocone formula. For a certain class of SDE systems, we validate optimal weak convergence order 1 of the a posteriori estimator, and termination of the adaptive method based on it within $${{\mathcal {O}}}(\mathtt{Tol}^{-1})$$
O
(
Tol
-
1
)
steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.