The valorization of lignin is being increasingly recognized as crucial to improve the economic viability of integrated biorefineries. Because of its inherent heterogeneity and recalcitrance, lignin has been treated as a waste product in the pulp and paper industry, but new technologies are now being explored to transform lignin into a sustainable resource and enhance its value chain. In the present study, alkaline oxidative depolymerization was investigated as a potential form of pretreatment to enable further biological conversion of LignoBoost kraft lignin (LB). LB lignin oxidation reactions were studied at various temperatures (120–200 °C) and O2 partial pressures (3–15 bar) to identify the optimal conditions for obtaining a biocompatible, oxidatively depolymerized lignin (ODLB) stream. The low molecular weight compounds resulting from this treatment consisted mainly of aromatic monomers and carboxylic acids. The highest yield of aromatic monomers, 3 wt %, was obtained at 160 °C and 3 bar O2. The yield of carboxylic acids increased with both increasing temperature and O2 pressure, exceeding 13% under the harshest conditions investigated. The growth of four aromatic-catabolizing bacterial strains was examined on reaction product mixtures, all of which showed growth on agar plates utilizing ODLB as the sole source of carbon and energy. Rhodococcus opacus and Sphingobium sp. SYK-6 were found to consume most of the aromatic monomers present in the ODLB (e.g., vanillin, vanillate, acetovanillone, and guaiacol). The findings of this study indicate that pretreatment by oxidative depolymerization has potential in the biological valorization of technical lignin streams, for the production of valuable chemicals and materials.
L-tryptophan production from glycerol with Escherichia coli was analysed by perturbation studies and metabolic control analysis. The insertion of a non-natural shikimate transporter into the genome of an Escherichia coli L-tryptophan production strain enabled targeted perturbation within the product pathway with shikimate during parallelised short-term perturbation experiments with cells withdrawn from a 15 L fed-batch production process. Expression of the shikimate/H+-symporter gene (shiA) from Corynebacterium glutamicum did not alter process performance within the estimation error. Metabolic analyses and subsequent extensive data evaluation were performed based on the data of the parallel analysis reactors and the production process. Extracellular rates and intracellular metabolite concentrations displayed evident deflections in cell metabolism and particularly in chorismate biosynthesis due to the perturbations with shikimate. Intracellular flux distributions were estimated using a thermodynamics-based flux analysis method, which integrates thermodynamic constraints and intracellular metabolite concentrations to restrain the solution space. Feasible flux distributions, Gibbs reaction energies and concentration ranges were computed simultaneously for the genome-wide metabolic model, with minimum bias in relation to the direction of metabolic reactions. Metabolic control analysis was applied to estimate elasticities and flux control coefficients, predicting controlling sites for L-tryptophan biosynthesis. The addition of shikimate led to enhanced deviations in chorismate biosynthesis, revealing a so far not observed control of 3-dehydroquinate synthase on L-tryptophan formation. The relative expression of the identified target genes was analysed with RT-qPCR. Transcriptome analysis revealed disparities in gene expression and the localisation of target genes to further improve the microbial L-tryptophan producer by metabolic engineering.
The application of artificial microbial consortia for biotechnological production processes is an emerging field in research as it offers great potential for the improvement of established as well as the development of novel processes. In this review, we summarize recent highlights in the usage of various microbial consortia for the production of, for example, platform chemicals, biofuels, or pharmaceutical compounds. It aims to demonstrate the great potential of co-cultures by employing different organisms and interaction mechanisms and exploiting their respective advantages. Bacteria and yeasts often offer a broad spectrum of possible products, fungi enable the utilization of complex lignocellulosic substrates via enzyme secretion and hydrolysis, and microalgae can feature their abilities to fixate CO 2 through photosynthesis for other organisms as well as to form lipids as potential fuelstocks. However, the complexity of interactions between microbes require methods for observing population dynamics within the process and modern approaches such as modeling or automation for process development. After shortly discussing these interaction mechanisms, we aim to present a broad variety of successfully established co-culture processes to display the potential of artificial microbial consortia for the production of biotechnological products.
Agro‐residues like wheat bran may be a useful carbon source for fermentation processes. However, due to their composition, hydrolysis appears complex. A co‐cultivation process was established with the two fungi A. niger and T. reesei for the production of an adapted mixture of enzymes for hydrolysis. This enzyme solution reached a higher space‐time yield of sugars during the hydrolysis of wheat bran compared to enzymes from respective monocultures, demonstrating the potential of this co‐culture for the production of complementary enzyme mixtures for the hydrolysis of wheat bran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.