Monolayers of transition metal dichalcogenides (TMDCs) feature exceptional optical properties that are dominated by excitons, tightly bound electron-hole pairs. Forming van der Waals heterostructures by deterministically stacking individual monolayers allows to tune various properties via choice of materials [1] and relative orientation of the layers [2, 3]. In these structures, a new type of exciton emerges, where electron and hole are spatially separated. These interlayer excitons [4, 5, 6] allow exploration of many-body quantum phenomena [7, 8] and are ideally suited for valleytronic applications [9]. Mostly, a basic model of fully spatially-separated electron and hole stemming from the K valleys of the monolayer Brillouin zones is applied to describe such excitons. Here, we combine photoluminescence spectroscopy and first principle calculations to expand the concept of interlayer excitons. We identify a partially charge-separated electron-hole pair in MoS 2 /WSe 2 heterostructures residing at the Γ and K valleys. We control the emission energy of this new type of momentum-space indirect, yet strongly-bound exciton by variation of the relative orientation of the layers. These findings represent a crucial step towards the understanding and control of excitonic effects in TMDC heterostructures and devices.An optical micrograph of a representative MoS 2 /WSe 2 heterobilayer (HB), which was fabricated by deterministic transfer and stacking [10] followed by an annealing procedure, is shown *
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic 1-3 , Mott insulating 4 , or superconducting phases 5,6 . In transition metal dichalcogenide heterostructures 7 , electrons and holes residing in different monolayers can bind into spatially indirect excitons 1,3,8-11 with a strong potential for optoelectronics 11,12 , valleytronics 1,3,13 , Bose condensation 14 , superfluidity 14,15 , and moiré-induced nanodot lattices 16 . Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra-and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.In monolayers of transition metal dichalcogenides (TMDs), the confinement of electronic motion into two dimensions and the suppression of dielectric screening facilitate unusually strong Coulomb interaction 17-20 . This gives rise to excitons with giant binding energies of several hundred meV 17 , small Bohr radii 18 and ultrashort radiative lifetimes 19 . When two monolayers are contacted with type-II band alignment, the conduction band minimum and the valence band maximum are located in two different layers 7 . Owing to their proximity, electron-hole (e-h) pairs in adjacent monolayers are still subject to strong mutual Coulomb attraction. Interband photoluminescence combined with theory has, indeed, provided evidence of interlayer excitons 8,21-23 . Because the composite electron and hole wavefunctions overlap only weakly in space, these excitons are long lived -a key asset for future applications 1,3,14-16,24 .Yet, the weak coupling to light renders these quasiparticles inaccessible to interband absorption spectroscopy. Hence the binding energies of interlayer excitons, which depend sensitively on the delocalization of the electronic wavefunctions over the heterostructure 23 , have not been measured.Signatures of the ultrafast interlayer charge transfer have been studied by interband spectroscopy 8,21 .These techniques, however, cannot measure Coulomb correlations or the formation of interlayer excitons, on the intrinsic ultrashort timescales.Meanwhile, phase-locked electromagnetic pulses in the terahertz (THz) and mid-infrared (MIR) range have directly accessed ultrafast low-...
Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin–valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin–valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of −15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.
The possibility of hybridizing collective electronic motion with mid-infrared light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement and tailored nanophotonics. Graphene and its heterostructures have attracted particular attention because the absence of an energy gap allows plasmon polaritons to be tuned continuously. Here, we introduce black phosphorus as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, black phosphorus is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron-hole pairs by ultrashort near-infrared pulses. Here, we design a SiO/black phosphorus/SiO heterostructure in which the surface phonon modes of the SiO layers hybridize with surface plasmon modes in black phosphorus that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron-hole plasma, coherent hybrid polariton waves can be launched by a broadband mid-infrared pulse coupled to the tip of a scattering-type scanning near-field optical microscopy set-up. The scattered radiation allows us to trace the new hybrid mode in time, energy and space. We find that the surface mode can be activated within ∼50 fs and disappears within 5 ps, as the electron-hole pairs in black phosphorus recombine. The excellent switching contrast and switching speed, the coherence properties and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices.
The recent discovery of artificial phase transitions induced by stacking monolayer materials at magic twist angles represents a paradigm shift for solid state physics. Twist-induced changes of the single-particle band structure have been studied extensively, yet a precise understanding of the underlying Coulomb correlations has remained challenging. Here we reveal in experiment and theory, how the twist angle alone affects the Coulomb-induced internal structure and mutual interactions of excitons. In homobilayers of WSe 2 , we trace the internal 1s-2p resonance of excitons with phase-locked mid-infrared pulses as a function of the twist angle. Remarkably, the exciton binding energy is renormalized by up to a factor of two, their lifetime exhibits an enhancement by more than an order of magnitude, and the exciton-exciton interaction is widely tunable. Our work opens the possibility of tailoring quasiparticles in search of unexplored phases of matter in a broad range of van der Waals heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.