Clonal embryonic endothelial progenitor cells (eEPCs) isolated from embryonic day 7.5 mice home specifically to hypoxic areas in mouse tumor metastases but spare normal organs and do not form carcinomas. Based on these results, we assessed the potential of eEPCs to enhance vascularization and limit organ dysfunction after ischemia in syngenic and xenotypic organisms. The angiogenic potential of eEPCs was evaluated in chronic ischemic rabbit hindlimbs after regional application by retroinfusion. eEPC treatment improved limb perfusion, paralleled by an increase in capillary density and collateral blood vessel number. Systemic eEPC infusion into mice after ischemic cardiac insult increased postischemic heart output measured by a marked improvement in left ventricle developed pressure and both systolic and diastolic functions. In vitro, eEPCs strongly induced vascular outgrowths from aortic rings. To address the molecular basis of this intrinsic angiogenic potential, we investigated the eEPC transcriptome. Genome-wide Affymetrix GeneChip analysis revealed that the eEPCs express a wealth of secreted factors known to induce angiogenesis, tissue remodeling, and organogenesis that may contribute to the eEPC-mediated beneficial effects. Our findings show that eEPCs induce blood vessel growth and cardioprotection in severe ischemic conditions providing a readily available source to study the mechanisms of neovascularization and tissue recovery.
Cortical networks underpinning attentional control and mentalizing converge at the right temporoparietal junction (rTPJ). It is debated whether the rTPJ is fractionated in neighboring, but separate functional modules underpinning attentional control and mentalizing, or whether one overarching cognitive mechanism explains the rTPJ’s role in both domains. Addressing this question, we combined attentional control and mentalizing in a factorial design within one task. We added a social context condition, in which another individual’s mental states became apparently task-relevant, to a spatial cueing paradigm. This allowed for assessing cue validity- and context-dependent functional activity and effective connectivity of the rTPJ within corresponding cortical networks. We found two discriminable rTPJ subregions, an anterior and a posterior one. Yet, we did not observe a sharp functional dissociation between these two, as both regions responded to attention cueing and social context manipulation. The results suggest that the rTPJ is part of both the ventral attention and the ToM network and that its function is defined by context-dependent coupling with the respective network. We argue that the rTPJ as a functional unit underpins an overarching cognitive mechanism in attentional control and mentalizing and discuss how the present results help to further specify this mechanism.
This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121 kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21 rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.
The synchrotron and storage ring COSY accelerates and stores unpolarized and polarized proton or deuteron beams in the momentum range of 0.3 to 3.65 GeV=c [14,15].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.