Current methods used for analyzing biomarkers involve expensive and time consuming techniques like the Sandwich ELISA which require lengthy incubation times, high reagent costs, and bulky optical equipment. We have developed a technique involving the use of a micro-channel with integrated electrodes, functionalized with receptors specific to target biomarkers. We have applied our biochip to the rapid electrical detection and quantification of target protein biomarkers using protein functionalized micro-channels. We successfully demonstrate detection of anti-hCG antibody, at a concentration of 1 ng ml−1 and a dynamic range of three orders of magnitude, in less than one hour. We envision the use of this technique in a handheld device for multiplex high throughput analysis using an array of micro-channels for probing various protein biomarkers in clinically relevant samples such as human serum for cancer detection.
The linac coherent light source (LCLS), an x-ray free-electron laser project presently under construction at SLAC, uses a 2.856 GHz rf photocathode gun with a copper cathode for its electron source. While the copper cathode is performing well for the LCLS project, a cathode material with higher quantum efficiency would reduce the drive laser requirements and allow a greater range of operating conditions. Therefore a robust CsBr=Cu photocathode with greater than 50 times the quantum yield at 257 nm relative to the present LCLS copper cathode has been investigated. Preliminary experiments using a dedicated electron source development test stand at SLAC/SSRL are encouraging and are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.