Abstract. Automated techniques for analysis and optimization of finite-precision computations have recently garnered significant interest. Most of these were, however, developed independently. As a consequence, reuse and combination of the techniques is challenging and much of the underlying building blocks have been re-implemented several times, including in our own tools. This paper presents a new framework, called Daisy, which provides in a single tool the main building blocks for accuracy analysis of floating-point and fixed-point computations which have emerged from recent related work. Together with its modular structure and optimization methods, Daisy allows developers to easily recombine, explore and develop new techniques. Daisy's input language, a subset of Scala, and its limited dependencies make it furthermore user-friendly and portable.
Aim:The knowledge of a species biogeographical patterns greatly enhances our understanding of geographical ecology, which can improve identifying key conservation needs. Yet, this knowledge is still scarce for many marine top predators. Here, we aim to analyse movement patterns and spatial structuring of a large predator, the short-finned pilot whale Globicephala macrorhynchus, over a wide geographical area.Location: North-east Atlantic, in Macaronesian archipelagos (Azores, Madeira and Canaries) and Iberian Peninsula (Sagres).
Methods:We used likelihood techniques to estimate residency times and transition probabilities and carried out social analysis from individual photographic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.