Heterotic orbifolds provide promising constructions of MSSM-like models in string theory. We investigate the connection of such orbifold models with smooth Calabi-Yau compactifications by examining resolutions of the T 6 / 6-II orbifold (which are far from unique) with Abelian gauge fluxes. These gauge backgrounds are topologically characterized by weight vectors of twisted states; one per fixed point or fixed line. The VEV's of these states generate the blowup from the orbifold perspective, and they reappear as axions on the blowup. We explain methods to solve the 24 resolution dependent Bianchi identities and present an explicit solution. Despite that a solution may contain the MSSM particle spectrum, the hypercharge turns out to be anomalous: Since all heterotic MSSM orbifolds analyzed so far have fixed points where only SM charged states appear, its gauge group can only be preserved provided that those singularities are not blown up. Going beyond the comparison of purely topological quantities (e.g. anomalous U(1) masses) may be hampered by the fact that in the orbifold limit the supergravity approximation to lowest order in α ′ is breaking down.
We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.