The neurexin family of cell adhesion proteins consists of three members in vertebrates and has homologs in several invertebrate species. In mammals, each neurexin gene encodes an α-neurexin in which the extracellular portion is long, and a β-neurexin in which the extracellular portion is short. As a result of alternative splicing, both major isoforms can be transcribed in many variants, contributing to distinct structural domains and variability. Neurexins act predominantly at the presynaptic terminal in neurons and play essential roles in neurotransmission and differentiation of synapses. Some of these functions require the formation of trans-synaptic complexes with postsynaptic proteins such as neuroligins, LRRTM proteins or cerebellin. In addition, rare mutations and copy-number variations of human neurexin genes have been linked to autism and schizophrenia, indicating that impairments of synaptic function sustained by neurexins and their binding partners may be relevant to the pathomechanism of these debilitating diseases.
We have analyzed two novel mouse mutant strains, Rco12 and Rco13, displaying a wavy pelage and curly vibrissae that have been identified in an ENU screen for dominant mutations affecting the pelage. The mutations were mapped to mouse Chromosome 15 and identified as missense point mutations in the first exon of the Krt71 (formerly called Krt2-6g) gene causing alterations of amino acid residue 143 from alanine to glycine (Rco12) and residue 146 from isoleucine to phenylalanine. The morphologic analyses demonstrated that both mutations cause identical phenotypes leading to the formation of filamentous aggregates in Henle's and Huxley's layers of the inner root sheath (IRS) of the hair follicle that leads to the bending of the hair shaft. Both novel mutations are located in the immediate vicinity of previously identified mutations in murine Krt71 that cause similar phenotypes and alter the helix initiation motif of the keratin. The characterization of these mutants demonstrates the importance of this Krt71 domain for the formation of linear IRS intermediate filaments.
Reduced coat 3 (Rco3) is a new spontaneous autosomal recessive mutation with defects in hair structure and progressive alopecia. Here we describe chromosomal mapping and molecular identification of the Rco3 mutation. The murine Rco3 locus maps to a 2-Mb interval on chromosome 15 encompassing the keratin type II gene cluster. Recently, mK6irs1 was described as a type II keratin expressed in Henle's and Huxley's layer of the murine inner root sheath. Genomic sequencing revealed a 10-bp deletion in exon 1 of mK6irs1 resulting in a frameshift after 58 amino acid residues and, therefore, the absence of 422 carboxy-terminal amino acid residues containing the complete alpha-helical rod domain. Henle's and Huxley's layers show no immunoreactivity with mK6irs1-specific antibodies and the absence of intermediate filament formation in electron microscopic images. These results indicate that the expression of functional mK6irs1 is indispensable for intermediate filament formation in the inner root sheath and highlights the importance of the keratinization of the inner root sheath in the normal formation of the hair shaft.
The recessive mutation oligotriche (olt) affects the coat and male fertility in the mouse. In homozygous (olt/olt) mutants, the coat is sparse, most notably in the inguinal and medial femoral region. In these regions, almost all hair shafts are bent and distorted in their course through the dermis and rarely penetrate the epidermis because the hair cortex is not fully keratinized. During hair follicle morphogenesis, mutant hair follicles exit from anagen one day before those of normal littermates and show a prolongation of the catagen stage. The oligotriche (olt) locus was mapped to distal chromosome 9 within a 5-Mbp interval distal to D9Mit279. Analysis of candidate gene expression revealed that olt/olt mutant mice do not express functional phospholipase C delta 1 (Plcd1) mRNA. This deficiency is the consequence of a 234-kbp deletion involving not only the Plcd1 locus but also the chromosomal segment harboring the genes Vill (villin-like), Dlec1 (deleted in lung and esophageal cancer 1), Acaa1b (acetyl-Coenzyme A acyltransferase 1B, synonym thiolase B), and parts of the genes Ctdspl (carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase-like) and Slc22a14 (solute carrier family 22 member 14). Offspring of olt/olt females, mated with Plcd1 ( -/- ) knockout males, exhibit coat defects similar to those observed in homozygous olt/olt mutant mice but the spermiogenesis in male offspring is normal. We conclude that the 234-kbp deletion from chromosome 9 harbors a gene involved in spermiogenesis and we propose that the oligotriche mutant be used as a model for the study of the putative tumor suppressor genes Dlec1, Ctdspl, and Vill. We also suggest that the oligotriche locus be named Del(9Ctdspl-Slc22a14)1Pas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.