The formation of peptide bonds is one of the most important biochemical reaction steps. Without the development of structurally and catalytically active polymers, there would be no life on our planet. However, the formation of large, complex oligomer systems is prevented by the high thermodynamic barrier of peptide condensation in aqueous solution. Liquid sulphur dioxide proves to be a superior alternative for copper-catalyzed peptide condensations. Compared to water, amino acids are activated in sulphur dioxide, leading to the incorporation of all 20 proteinogenic amino acids into proteins. Strikingly, even extremely low initial reactant concentrations of only 50 mM are sufficient for extensive peptide formation, yielding up to 2.9% of dialanine in 7 days. The reactions carried out at room temperature and the successful use of the Hadean mineral covellite (CuS) as a catalyst, suggest a volcanic environment for the formation of the peptide world on early Earth.
The hyphenation of capillary electrophoresis with high‐resolution mass spectrometry, such as Orbitrap MS, is of broad interest for the unambiguous and exceptionally sensitive identification of compounds. However, the coupling of these techniques requires a robust ionization interface that does not influence the stability of the separation voltage while coping with oxidation of the emitter tip at large ionization voltages. Herein, we present the design of a sheath‐flow CE‐ESI‐MS interface which combines a robust and easy to operate set‐up with high‐resolution Orbitrap MS detection. The sheath liquid interface is equipped with a gold coated electrospray emitter which increases the stability and overall lifetime of the system. For the characterization of the interface, the spray stability and durability were investigated in dependence of the sheath‐flow rate, electrospray voltage, and additional gold coating. The optimized conditions were applied to a separation of angiotensin II and neurotensin resulting in LODs of 2.4 and 3.5 ng/mL.
Peptides have essential structural and catalytic functions in living organisms. The formation of peptides requires the overcoming of thermodynamic and kinetic barriers. In recent years, various formation scenarios that may have occurred during the origin of life have been investigated, including iron(III)-catalyzed condensations. However, iron(III)-catalysts require elevated temperatures and the catalytic activity in peptide bond forming reactions is often low. It is likely that in an anoxic environment such as that of the early Earth, reduced iron compounds were abundant, both on the Earth's surface itself and as a major component of iron meteorites. In this work, we show that reduced iron activated by acetic acid mediates efficiently peptide formation. We recently demonstrated that, compared to water, liquid sulfur dioxide (SO 2 ) is a superior reaction medium for peptide formations. We thus investigated both and observed up to four amino acid/peptide coupling steps in each solvent. Reaction with diglycine (G 2 ) formed 2.0 % triglycine (G 3 ) and 7.6 % tetraglycine (G 4 ) in 21 d. Addition of G 3 and dialanine (A 2 ) yielded 8.7 % G 4 . Therefore, this is an efficient and plausible route for the formation of the first peptides as simple catalysts for further transformations in such environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.