This paper develops and assesses protocols for the 2 measurement of transmission functions in lightweight 3 buildings. A transmission function is defined that 4 relates the spatial-average sound pressure level in a 5 room to the structure-borne sound power injected into 6 a wall or floor. The intention is to facilitate the pre-7 diction of structure-borne sound transmission from 8 machinery to receiving rooms. Errors in the mea-9 surement of the power input can be reduced by using 10 a pair of accelerometers on either side of the excita-11 tion point rather than a single accelerometer on one 12 side. Laboratory measurements on a timber-frame 13 wall indicate that steady-state excitation using an 14 electrodynamic shaker and transient excitation with a 15 force hammer can be considered as equivalent. Mea-16 sured transmission functions from a laboratory test 17 construction below 500 Hz are found not to be signifi-18 cantly affected by the choice of excitation position be-19 ing directly above a stud or in a bay. Laboratory and 20 field results on different timber-frame walls indicate 21 that with transient excitation using a force hammer, 22 the transmission function is measurable in vertically-, 23 horizontally-and diagonally-adjacent receiving rooms 24 over the frequency range from 20 to 1 k Hz. The ap-25 proach has been applied in field measurements which 26 indicate that there is potential to create databases of 27 average transmission functions as a simplified predic-28 tion tool for sound pressure levels from service equip-29 ment in buildings.
Die Altbausanierung nimmt im gesamten Baubereich eine immer bedeutendere Stellung ein. Falls die geplanten Sanierungsmaßnahmen nicht unter den Bestandsschutz von Baudenkmälern fallen, sind die Anforderungen der zum Zeitpunkt der Sanierung baurechtlich eingeführten Normen zu berücksichtigen. Das Bauteil, das bei der Sanierung eine besonders sorgfältige Planung erfordert, ist die Wohnungstrenndecke, die in Altbauten häufig als Holzbalkendecke ausgeführt wurde. Die vorhandenen Planungsgrundlagen für den Schallschutznachweis von Holzbalkendecken sind sowohl in der Normung als auch in der Literatur sehr lückenhaft. Um bessere Planungsdaten zu erhalten, wurde deshalb am ift Rosenheim zunächst ein Forschungsvorhaben durchgeführt, in dem die Luft‐ und Trittschalldämmung typischer Altbaudecken und deren Verbesserungen durch unterschiedliche Sanierungsmaßnahmen unter Laborverhältnissen ohne Flankenübertragung untersucht wurden [1], [2]. In einem weiteren Forschungsvorhaben [3] wurde in Kooperation mit der Hochschule Rosenheim die Flankenübertragung bei unterschiedlichen Mauerwerkstypen und Deckeneinbindungen ermittelt. Der vorliegende Beitrag beschreibt den Einfluss der Deckenkonstruktion auf die Schalldämmung und die Ermittlung der Planungswerte für die direkte Übertragung über die Decke. In einem noch folgenden zweiten Beitrag werden Planungsdaten für die Flankenübertragung bei Altbaukonstruktionen behandelt.Sound insulation of wood beam ceilings – design guidance for building refurbishment projects, part I: Direct sound insulation. The restoration of existing buildings plays an increasing role in the construction industry. If projected remedial actions are not subject to preservation requirements, then the relevant requirements to be applied are those listed in the current building standards. One structural element that requires an especially careful planning is the vertical partition between apartments, which often comprises of a timber beam floor construction. The current knowledge for the planning of the acoustic properties is insufficient, both in the standards as in literature. In order to close this gap, a research project was carried out at the ift Rosenheim, in which insulation against airborne as well as impact sound was tested for typical floor constructions in existing old buildings. Also a variety of remedial actions to improve the acoustic insulation were tested under laboratory conditions (not including flanking transmission) [1] [2]. A subsequent research project was carried out in collaboration with the University of Applied Sciences Rosenheim to investigate flanking transmission for various types of connections of the masonry wall with the floor. The present article describes the influence of the floor construction on the acoustic insulation and the generation of numbers for acoustic planning parameters concerning the direct transmission of sound via the floor. A subsequent article will address the issue of planning data for the flanking sound transmission.
Die Altbausanierung nimmt im gesamten Baubereich eine immer bedeutendere Stellung ein. Falls die geplanten Sanierungsmaßnahmen nicht unter den Bestandsschutz von Baudenkmälern fallen, sind die Anforderungen der zum Zeitpunkt der Sanierung baurechtlich eingeführten Normen zu berücksichtigen. Das Bauteil, das bei der Sanierung eine besonders sorgfältige Planung erfordert, ist die Wohnungstrenndecke, die in Altbauten häufig als Holzbalkendecke ausgeführt wurde. Die vorhandenen Planungsgrundlagen für den Schallschutznachweis von Holzbalkendecken sind sowohl in der Normung als auch in der Literatur sehr lückenhaft. Um bessere Planungsdaten zu erhalten, wurde deshalb zunächst ein Forschungsvorhaben [1] durchgeführt, in dem die Luft‐ und Trittschalldämmung typischer Altbaudecken und deren Verbesserungen durch unterschiedliche Sanierungsmaßnahmen unter Laborverhältnissen ohne Flankenübertragung untersucht wurden. Die Ergebnisse wurden in einem ersten Beitrag [2] veröffentlicht. Im vorliegenden zweiten Beitrag werden die Ergebnisse eines weiteren Forschungsvorhabens [3] vorgestellt. Der Fokus lag hierbei auf der Ermittlung der Flankenübertragung bei unterschiedlichen Mauerwerkstypen und Deckeneinbindungen. Die Ergebnisse werden als Planungsdaten für die Flankenübertragung bei Altbaukonstruktionen dargestellt und die Anwendung des erarbeiteten Rechenmodells sowie die Validierung anhand von Baumessungen erläutert. Sound insulation of timber joist floors – design guidance for building refurbishment projects. Part 2: Flanking transmission. The refurbishment of existing buildings plays an increasing role in the entire construction industry. If projected refurbishment actions are not subject to official listed building or monument requirements, then the relevant requirements will be those listed in the current building standards. The refurbishment of one particular structural element requires especially careful planning: the horizontal partition between apartments, which in old buildings often comprises a timber beam floor. There are major gaps in the current knowledge used to plan the acoustic properties of such floors, in both the standards and literature. In order to generate better planning data, an initial research project [1] investigating insulation against both airborne and impact sound was carried out for typical floor constructions in old buildings. Improvements to the acoustic insulation of such floors using a variety of refurbishment measures were tested under laboratory conditions, (not including flanking transmission). The results were published as Part 1 [2]. The present Part 2 describes the results of a subsequent research project [3] focused on investigating flanking transmission in various wall/floor combinations. The results are presented as planning data for flanking transmission in constructions within old buildings. An explanation is provided of how the calculation model compiled was applied, and how it was validated using measurements from old buildings.
Prediction of machinery noise in buildings requires knowledge about the airborne sound radiation and the structure-borne sound excitation from the source of interest. Laboratory methods to determine the airborne sound power of sources are well established since many years. However, standard methods for the characterization of structure-borne sound from building service equipment were first described in EN 15657-1:2009 which was then superseded by EN 15657:2017. In recent years the test methods described in this standard were applied in several research and development projects in the laboratory for sound measurement (LaSM) at Rosenheim Technical University of Applied Sciences. For this purpose the experimental equipment and the facilities of the laboratory were expanded which involves a variable reception plate test rig that was built in 2017. This paper describes the experience with test methods within and beyond the scope of the EN 15657:2017 using the available laboratory resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.