It appears that most models for micro-structured materials with auxetic deformations were found by clever intuition, possibly combined with optimization tools, rather than by systematic searches of existing structure archives. Here we review our recent approach of finding micro-structured materials with auxetic mechanisms within the vast repositories of planar tessellations. This approach has produced two previously unknown auxetic mechanisms, which have Poisson's ratio νss=-1 when realized as a skeletal structure of stiff incompressible struts pivoting freely at common vertices. One of these, baptized Triangle-Square Wheels, has been produced as a linear-elastic cellular structure from Ti-6Al-4V alloy by selective electron beam melting. Its linear-elastic properties were measured by tensile experiments and yield an effective Poisson's ratio νLE≈-0.75, also in agreement with finite element modeling. The similarity between the Poisson's ratios νSS of the skeletal structure and νLE of the linear-elastic cellular structure emphasizes the fundamental role of geometry for deformation behavior, regardless of the mechanical details of the system. The approach of exploiting structure archives as candidate geometries for auxetic materials also applies to spatial networks and tessellations and can aid the quest for inherently three-dimensional auxetic mechanisms.
We present a thorough investigation of the mechanical behaviour of a non-stochastic cellular auxetic structure. A combination of experimental and numerical methods is used to gain a deeper understanding of the mechanical behaviour and its dependence on the geometric properties of the cellular structure. The experimental samples are built from Ti-6Al-4V using selective electron beam melting, an additive manufacturing process giving the possibility to vary the geometry of the structure in a highly controlled manner. The use of finite element simulations and mathematical homogenisation allows us also to investigate off-axis properties of the cellular material. This leads to a more comprehensive understanding of the mechanical behaviour of the auxetics. Ultimately, the gained knowledge can be used to tailor auxetic materials to specific applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.