Cell engineering and bioprocess optimizations such as low temperature cultivation represent powerful tools to improve cellular performance and product yields of mammalian production cells. Besides monoclonal antibodies (mABs), novel biotherapeutic formats such as viral vectors will gain increasing importance. Here, we demonstrate that similar to Chinese hamster ovary (CHO) cells, product yields of recombinant adeno-associated virus (rAAV) producing HeLa cells can be markedly increased by low temperature cultivation. MicroRNAs (miRNAs) are small non-coding RNAs that critically regulate cell phenotypes. We thus investigated differential miRNA expression in response to mild hypothermia in CHO and HeLa production cells. We discovered miR-483 to be substantially up-regulated upon temperature down-shift in both cell types. Functional validation experiments revealed that introduction of miR-483 mimics led to a significant increase in both rAAV and mAB production in HeLa and CHO cells, respectively. Furthermore, inhibition of miR-483 up-regulation during mild hypothermia significantly decreased product yields, suggesting that miR-483 is a key regulator of cellular productivity in mammalian cells. In addition, miRNA target gene identification indicated that miR-483 might regulate genes directly involved in cellular survival and protein expression. Our results highlight that miR-483 is a valuable tool for product-independent engineering of mammalian production cells.
Process intensification by application of perfusion mode in pre‐stage bioreactors and subsequent inoculation of cell cultures at high seeding densities (HSD) has the potential to meet the increasing requirements of future manufacturing demands. However, process development is currently restrained by a limited understanding of the cell's requirements under these process conditions. The goal of this study was to use extended metabolite analysis and metabolic modeling for targeted optimization of HSD cultivations. The metabolite analysis of HSD N‐stage cultures revealed accumulation of inhibiting metabolites early in the process and flux balance analysis led to the assumption that reactive oxygen species (ROS) were contributing to the fast decrease in cell viability. Based on the metabolic analysis an optimized feeding strategy with lactate and cysteine supplementation was applied, resulting in an increase in antibody titer of up to 47%. Flux balance analysis was further used to elucidate the surprisingly strong synergistic effect of lactate and cysteine, indicating that increased lactate uptake led to reduced ROS formation under these conditions whilst additional cysteine actively reduced ROS via the glutathione pathway. The presented results finally demonstrate the benefit of modeling approaches for process intensification as well as the potential of HSD cultivations for biopharmaceutical manufacturing.
In bioprocess engineering the Qualtiy by Design (QbD) initiative encourages the use of models to define design spaces. However, clear guidelines on how models for QbD are validated are still missing. In this review we provide a comprehensive overview of the validation methods, mathematical approaches, and metrics currently applied in bioprocess modeling. The methods cover analytics for data used for modeling, model training and selection, measures for predictiveness, and model uncertainties. We point out the general issues in model validation and calibration for different types of models and put this into the context of existing health authority recommendations. This review provides a starting point for developing a guide for model validation approaches. There is no one-fits-all approach, but this review should help to identify the best fitting validation method, or combination of methods, for the specific task and the type of bioprocess model that is being developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.