Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association (GWA) meta-analysis based in 135,458 cases and 344,901 control, We identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression, and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relations of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine and define the basis of major depression and imply a continuous measure of risk underlies the clinical phenotype.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Heritability and polygenic predictionIn the EUR sample, the SNP-based heritability (h 2 SNP ) (that is, the proportion of variance in liability attributable to all measured SNPs)
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRaP URL' above for details on accessing the published version and note that access may require a subscription.
More than half of the world's population now lives in cities, making the creation of a healthy urban environment a major policy priority. Cities have both health risks and benefits, but mental health is negatively affected: mood and anxiety disorders are more prevalent in city dwellers and the incidence of schizophrenia is strongly increased in people born and raised in cities. Although these findings have been widely attributed to the urban social environment, the neural processes that could mediate such associations are unknown. Here we show, using functional magnetic resonance imaging in three independent experiments, that urban upbringing and city living have dissociable impacts on social evaluative stress processing in humans. Current city living was associated with increased amygdala activity, whereas urban upbringing affected the perigenual anterior cingulate cortex, a key region for regulation of amygdala activity, negative affect and stress. These findings were regionally and behaviourally specific, as no other brain structures were affected and no urbanicity effect was seen during control experiments invoking cognitive processing without stress. Our results identify distinct neural mechanisms for an established environmental risk factor, link the urban environment for the first time to social stress processing, suggest that brain regions differ in vulnerability to this risk factor across the lifespan, and indicate that experimental interrogation of epidemiological associations is a promising strategy in social neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.