Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association (GWA) meta-analysis based in 135,458 cases and 344,901 control, We identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression, and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relations of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine and define the basis of major depression and imply a continuous measure of risk underlies the clinical phenotype.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Heritability and polygenic predictionIn the EUR sample, the SNP-based heritability (h 2 SNP ) (that is, the proportion of variance in liability attributable to all measured SNPs)
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRaP URL' above for details on accessing the published version and note that access may require a subscription.
Bipolar disorder (BD) is a heritable mental illness with complex etiology. We performed a genome-wide association study (GWAS) of 41,917 BD cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. BD risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics, and anesthetics. Integrating eQTL data implicated 15 genes robustly linked to BD via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of BD subtypes indicated high but imperfect genetic correlation between BD type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of BD, identify novel therapeutic leads, and prioritize genes for functional follow-up studies.
We aggregated coding variant data for 81,412 type 2 diabetes cases and
370,832 controls of diverse ancestry, identifying 40 coding variant association
signals (p<2.2×10−7): of these,
16 map outside known risk loci. We make two important observations. First, only
five of these signals are driven by low-frequency variants: even for these,
effect sizes are modest (odds ratio ≤1.29). Second, when we used
large-scale genome-wide association data to fine-map the associated variants in
their regional context, accounting for the global enrichment of complex trait
associations in coding sequence, compelling evidence for coding variant
causality was obtained for only 16 signals. At 13 others, the associated coding
variants clearly represent “false leads” with potential to
generate erroneous mechanistic inference. Coding variant associations offer a
direct route to biological insight for complex diseases and identification of
validated therapeutic targets: however, appropriate mechanistic inference
requires careful specification of their causal contribution to disease
predisposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.