High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic, pulse pressure) to date in over one million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also reveal shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
We conducted genome-wide association studies of three phenotypes: subjective well-being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). We identified three variants associated with subjective well-being, two with depressive symptoms, and eleven with neuroticism, including two inversion polymorphisms. The two depressive symptoms loci replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ̂| ≈ 0.8) strengthen the overall credibility of the findings, and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal/pancreas tissues are strongly enriched for association.
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control.
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n=321,223) and offspring birth weight (n=230,069 mothers), we identified 190 independent association signals (129 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic effects, and then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of those alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.