The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions-in particular B-cell epitopes-but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen-antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B-cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen-antibody interfaces were shown to differ from other protein-protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H-bond, cation-p, amino-p, and p-p interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino-p and p-p chains, are formed. The amino acid composition differs significantly between the interfaces: antigen-antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes-albeit to a lesser extent-have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B-cell epitope prediction.
Transmembrane proteins play a fundamental role in a wide series of biological processes but, despite their importance, they are less studied than globular proteins, essentially because their embedding in lipid membranes hampers their experimental characterization. In this paper, we improved our understanding of their structural stability through the development of new knowledge-based energy functions describing amino acid pair interactions that prevail in the transmembrane and extramembrane regions of membrane proteins. The comparison of these potentials and those derived from globular proteins yields an objective view of the relative strength of amino acid interactions in the different protein environments, and their role in protein stabilization. Separate potentials were also derived from α -helical and β -barrel transmembrane regions to investigate possible dissimilarities. We found that, in extramembrane regions, hydrophobic residues are less frequent but interactions between aromatic and aliphatic amino acids as well as aromatic-sulfur interactions contribute more to stability. In transmembrane regions, polar residues are less abundant but interactions between residues of equal or opposite charges or non-charged polar residues as well as anion- π interactions appear stronger. This shows indirectly the preference of the water and lipid molecules to interact with polar and hydrophobic residues, respectively. We applied these new energy functions to predict whether a residue is located in the trans- or extramembrane region, and obtained an AUC score of 83% in cross validation, which demonstrates their accuracy. As their application is, moreover, extremely fast, they are optimal instruments for membrane protein design and large-scale investigations of membrane protein stability.
Understanding the role of stability strengths and weaknesses in proteins is a key objective for rationalizing their dynamical and functional properties such as conformational changes, catalytic activity, and protein-protein and protein-ligand interactions. We present BRANEart, a new, fast and accurate method to evaluate the per-residue contributions to the overall stability of membrane proteins. It is based on an extended set of recently introduced statistical potentials derived from membrane protein structures, which better describe the stability properties of this class of proteins than standard potentials derived from globular proteins. We defined a per-residue membrane propensity index from combinations of these potentials, which can be used to identify residues which strongly contribute to the stability of the transmembrane region or which would, on the contrary, be more stable in extramembrane regions, or vice versa. Large-scale application to membrane and globular proteins sets and application to tests cases show excellent agreement with experimental data. BRANEart thus appears as a useful instrument to analyze in detail the overall stability properties of a target membrane protein, to position it relative to the lipid bilayer, and to rationally modify its biophysical characteristics and function. BRANEart can be freely accessed from http://babylone.3bio.ulb.ac.be/BRANEart.
Transmembrane proteins play a fundamental role in a wide series of biological processes but, despite their importance, they are less studied than globular proteins, essentially because their embedding in lipid membranes hampers their experimental characterization. In this paper, we improved our understanding of their structural stability through the development of new knowledge-based energy functions describing amino acid pair interactions that prevail in the transmembrane and extramembrane regions of membrane proteins. The comparison of these potentials and those derived from globular proteins yields an objective view of the relative strength of amino acid interactions in the different protein environments, and their role in protein stabilization. Separate potentials were also derived from α-helical and β-barrel transmembrane regions to investigate possible dissimilarities. We found that, in extramembrane regions, hydrophobic residues are less frequent but interactions between aromatic and aliphatic amino acids as well as aromatic-sulfur interactions contribute more to stability. In transmembrane regions, polar residues are less abundant but interactions between residues of equal or opposite charges or non-charged polar residues as well as anion-π interactions appear stronger. This shows indirectly the preference of the water and lipid molecules to interact with polar and hydrophobic residues, respectively. We applied these new energy functions to predict whether a residue is located in the transor extramembrane region, and obtained an AUC score of 83% in cross validation, which demonstrates their accuracy. As their application is, moreover, extremely fast, they are optimal instruments for membrane protein design and large-scale investigations of membrane protein stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.