Heterologous biosynthesis of tetrahydrocannabinolic acid (THCA) in yeast is a biotechnological process in Natural Product Biotechnology that was recently introduced. Based on heterologous genes from Cannabis sativa and Streptomyces spp. cloned into Saccharomyces cerevisiae, the heterologous biosynthesis was fully embedded as a proof of concept. Low titer and insufficient biocatalytic rate of most enzymes require systematic optimization of recombinant catalyst by protein engineering and consequent C-flux improvement of the yeast chassis for sufficient precursor (acetyl-CoA), energy (ATP), and NADH delivery. In this review basic principles of in silico analysis of anabolic pathways towards olivetolic acid (OA) and cannabigerolic acid (CBGA) are elucidated and discussed to identify metabolic bottlenecks. Based on own experimental results, yeasts are discussed as potential platform organisms to be introduced as potential cannabinoid biofactories. Especially feeding strategies and limitations in the committed mevalonate and olivetolic acid pathways are in focus of in silico and experimental studies to validate the scientific and commercial potential as a realistic alternative to the plant Cannabis sativa.
Key points
• First time critical review of the heterologous process for recombinant THCA/CBDA production and critical review of bottlenecks and limitations for a bioengineered technical process
• Integrative approach of protein engineering, systems biotechnology, and biochemistry of yeast physiology and biosynthetic cannabinoid enzymes
• Comparison of NphB and CsPT aromatic prenyltransferases as rate-limiting catalytic steps towards cannabinoids in yeast as platform organisms
Cannabinoids from Cannabis sativa L. play an important role as natural products in clinics. The major cannabinoids compromise tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) and its decarboxylated analogs. In this review, we focus on often neglected minor cannabinoids and discuss biosynthetic and chemical degradation routes to other neglected cannabinoids in Cannabis sativa starting from THCA, CBDA and cannabichromenic acid (CBCA). Based on the literature, patents and scientific reports, essential routes for the chemical modification of cannabinoids are discussed to explain chemical diversity chemical conversion and degradation by UV light, as well as temperature and pH leading to the formation of structurally unusual cannabinoids in planta called as minor cannabinoids. Based on known bioorganic reaction schemes and organic chemistry, principles for minor cannabinoid formation like [2+2] cycloaddition, Markonov condensation, radical introduction, or aromatization are discussed. Finally, the non-aqueous environment in Cannabis sativa trichomes is analyzed to clarify their role of a miniaturized bioreactors the light-induced conversion in a non-aqueous enviroment. The overall objective is to bridge from metabolic profiling via cannabinomics to structural and chemical diversity that allows the definition of patterns with consequences also to pharmacology and plant breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.