In this work we describe the Waiting List Corpus consisting of de-identified referrals for several specialty consultations from the waiting list in Chilean public hospitals. A subset of 900 referrals was manually annotated with 9,029 entities, 385 attributes, and 284 pairs of relations with clinical relevance. A trained medical doctor annotated these referrals, and then together with other three researchers, consolidated each of the annotations. The annotated corpus has nested entities, with 32.2% of entities embedded in other entities. We use this annotated corpus to obtain preliminary results for Named Entity Recognition (NER). The best results were achieved by using a biLSTM-CRF architecture using word embeddings trained over Spanish Wikipedia together with clinical embeddings computed by the group. NER models applied to this corpus can leverage statistics of diseases and pending procedures within this waiting list. This work constitutes the first annotated corpus using clinical narratives from Chile, and one of the few for the Spanish language. The annotated corpus, the clinical word embeddings, and the annotation guidelines are freely released to the research community.
Here we describe a new clinical corpus rich in nested entities and a series of neural models to identify them. The corpus comprises de-identified referrals from the waiting list in Chilean public hospitals. A subset of 5,000 referrals (58.6% medical and 41.4% dental) was manually annotated with 10 types of entities, six attributes, and pairs of relations with clinical relevance. In total, there are 110,771 annotated tokens. A trained medical doctor or dentist annotated these referrals, and then, together with three other researchers, consolidated each of the annotations. The annotated corpus has 48.17% of entities embedded in other entities or containing another one. We use this corpus to build models for Named Entity Recognition (NER). The best results were achieved using a Multiple Single-entity architecture with clinical word embeddings stacked with character and Flair contextual embeddings. The entity with the best performance is abbreviation , and the hardest to recognize is finding . NER models applied to this corpus can leverage statistics of diseases and pending procedures. This work constitutes the first annotated corpus using clinical narratives from Chile and one of the few in Spanish. The annotated corpus, clinical word embeddings, annotation guidelines, and neural models are freely released to the community.
Automatic keyword retrieval from clinical texts: an application of natural language processing to massive data of Chilean suspected diagnosis Background: Free-text imposes a challenge in health data analysis since the lack of structure makes the extraction and integration of information difficult, particularly in the case of massive data. An appropriate machine-interpretation of electronic health records in Chile can unleash knowledge contained in large volumes of clinical texts, expanding clinical management and national research capabilities. Aim: To illustrate the use of a weighted frequency algorithm to find keywords. This finding was carried out in the diagnostic suspicion field of the Chilean specialty consultation waiting list, for diseases not covered by the Chilean Explicit Health Guarantees plan. Material and Methods: The waiting lists for a first specialty consultation for the period 2008-2018 were obtained from 17 out of 29 Chilean health services, and total of 2,592,925 diagnostic suspicions were identified. A natural language processing technique called Term Frequency-Inverse Document Frequency was used for the retrieval of diagnostic suspicion keywords. Results: For each specialty, four key words with the highest weighted frequency were determined. Word clouds showing words weighted by their importance were created to obtain a visual representation. These are available at cimt.uchile.cl/lechile/. Conclusions: The algorithm allowed to summarize unstructured clinical free-text data, improving its usefulness and accessibility.
Background In Chile, a patient needing a specialty consultation or surgery has to first be referred by a general practitioner, then placed on a waiting list. The Explicit Health Guarantees (GES in Spanish) ensures, by law, the maximum time to solve 85 health problems. Usually, a health professional manually verifies if each referral, written in natural language, corresponds or not to a GES-covered disease. An error in this classification is catastrophic for patients, as it puts them on a non-prioritized waiting list, characterized by prolonged waiting times. Methods To support the manual process, we developed and deployed a system that automatically classifies referrals as GES-covered or not using historical data. Our system is based on word embeddings specially trained for clinical text produced in Chile. We used a vector representation of the reason for referral and patient's age as features for training machine learning models using human-labeled historical data. We constructed a ground truth dataset combining classifications made by three healthcare experts, which was used to validate our results. Results The best performing model over ground truth reached an AUC score of 0.94, with a weighted F1-score of 0.85 (0.87 in precision and 0.86 in recall). During seven months of continuous and voluntary use, the system has amended 87 patient misclassifications. Conclusion This system is a result of a collaboration between technical and clinical experts, and the design of the classifier was custom-tailored for a hospital's clinical workflow, which encouraged the voluntary use of the platform. Our solution can be easily expanded across other hospitals since the registry is uniform in Chile.
Word embeddings have been widely used in Natural Language Processing (NLP) tasks. Although these representations can capture the semantic information of words, they cannot learn the sequence-level semantics. This problem can be handled using contextual word embeddings derived from pre-trained language models, which have contributed to significant improvements in several NLP tasks. Further improvements are achieved when pretraining these models on domain-specific corpora. In this paper, we introduce Clinical Flair, a domain-specific language model trained on Spanish clinical narratives. To validate the quality of the contextual representations retrieved from our model, we tested them on four named entity recognition datasets belonging to the clinical and biomedical domains. Our experiments confirm that incorporating domain-specific embeddings into classical sequence labeling architectures improves model performance dramatically compared to general-domain embeddings, demonstrating the importance of having these resources available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.