BackgroundDepression is a burdensome, recurring mental health disorder with high prevalence. Even in developed countries, patients have to wait for several months to receive treatment. In many parts of the world there is only one mental health professional for over 200 people. Smartphones are ubiquitous and have a large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms and providing context-sensitive intervention support.ObjectiveThe objective of this study is 2-fold, first to explore the detection of daily-life behavior based on sensor information to identify subjects with a clinically meaningful depression level, second to explore the potential of context sensitive intervention delivery to provide in-situ support for people with depressive symptoms.MethodsA total of 126 adults (age 20-57) were recruited to use the smartphone app Mobile Sensing and Support (MOSS), collecting context-sensitive sensor information and providing just-in-time interventions derived from cognitive behavior therapy. Real-time learning-systems were deployed to adapt to each subject’s preferences to optimize recommendations with respect to time, location, and personal preference. Biweekly, participants were asked to complete a self-reported depression survey (PHQ-9) to track symptom progression. Wilcoxon tests were conducted to compare scores before and after intervention. Correlation analysis was used to test the relationship between adherence and change in PHQ-9. One hundred twenty features were constructed based on smartphone usage and sensors including accelerometer, Wifi, and global positioning systems (GPS). Machine-learning models used these features to infer behavior and context for PHQ-9 level prediction and tailored intervention delivery.ResultsA total of 36 subjects used MOSS for ≥2 weeks. For subjects with clinical depression (PHQ-9≥11) at baseline and adherence ≥8 weeks (n=12), a significant drop in PHQ-9 was observed (P=.01). This group showed a negative trend between adherence and change in PHQ-9 scores (rho=−.498, P=.099). Binary classification performance for biweekly PHQ-9 samples (n=143), with a cutoff of PHQ-9≥11, based on Random Forest and Support Vector Machine leave-one-out cross validation resulted in 60.1% and 59.1% accuracy, respectively.ConclusionsProxies for social and physical behavior derived from smartphone sensor data was successfully deployed to deliver context-sensitive and personalized interventions to people with depressive symptoms. Subjects who used the app for an extended period of time showed significant reduction in self-reported symptom severity. Nonlinear classification models trained on features extracted from smartphone sensor data including Wifi, accelerometer, GPS, and phone use, demonstrated a proof of concept for the detection of depression superior to random classification. While findings of effectiveness must be reproduced in a RCT to proof causation, they pave the way for a new generation of digital heal...
BackgroundExisting research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression.ObjectiveThis systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care.MethodsSystematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg’s test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers.ResultsOf 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD –0.58, 95% CI –0.71 to –0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified.ConclusionsTechnology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders.
BackgroundResearch has so far benefited from the use of pedometers in physical activity interventions. However, when public health institutions (eg, insurance companies) implement pedometer-based interventions in practice, people may refrain from participating due to privacy concerns. This might greatly limit the applicability of such interventions. Financial incentives have been successfully used to influence both health behavior and privacy concerns, and may thus have a beneficial effect on the acceptance of pedometer-based interventions.ObjectiveThis paper presents the design and baseline characteristics of a cluster-randomized controlled trial that seeks to examine the effect of financial incentives on the acceptance of and adherence to a pedometer-based physical activity intervention offered by a health insurance company.MethodsMore than 18,000 customers of a large Swiss health insurance company were allocated to a financial incentive, a charitable incentive, or a control group and invited to participate in a health prevention program. Participants used a pedometer to track their daily physical activity over the course of 6 months. A Web-based questionnaire was administered at the beginning and at the end of the intervention and additional data was provided by the insurance company. The primary outcome of the study will be the participation rate, secondary outcomes will be adherence to the prevention program, physical activity, and health status of the participants among others.ResultsBaseline characteristics indicate that residence of participants, baseline physical activity, and subjective health should be used as covariates in the statistical analysis of the secondary outcomes of the study.ConclusionsThis is the first study in western cultures testing the effectiveness of financial incentives with regard to a pedometer-based health intervention offered by a large health insurer to their customers. Given that the incentives prove to be effective, this study provides the basis for powerful health prevention programs of public health institutions that are easy to implement and can reach large numbers of people in need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.