Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.
Understanding interfacial charge-transfer
processes on the atomic
level is crucial to support the rational design of energy-challenge
relevant systems such as solar cells, batteries, and photocatalysts.
A femtosecond time-resolved core-level photoelectron spectroscopy
study is performed that probes
the electronic structure of the interface between ruthenium-based
N3 dye molecules and ZnO nanocrystals within the first picosecond
after photoexcitation and from the unique perspective of the Ru reporter
atom at the center of the dye. A transient chemical shift of the Ru
3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding
energies is observed 500 fs after photoexcitation of the dye. The
experimental results are interpreted with the aid of ab initio calculations
using constrained density functional theory. Strong indications for
the formation of an interfacial charge-transfer state are presented,
providing direct insight into a transient electronic configuration
that may limit the efficiency of photoinduced free charge-carrier
generation.
We demonstrate the photoassociation of ultracold rubidium dimers using coherent femtosecond pulses. Starting from a cloud of ultracold rubidium atoms, electronically excited rubidium molecules are formed with shaped photoassociation pump pulses. The excited state molecules are projected with a time-delayed probe pulse onto molecular ion states which are detected in a mass spectrometer. Coherent transient oscillations of the excited state population are observed in the wings of the pump pulse, in agreement with the time-dependent solution of the Schrödinger equation of the excitation process.
We report on coherent control of excitation processes of translationally ultracold rubidium dimers in a magneto-optical trap by using shaped femtosecond laser pulses. Evolution strategies are applied in a feedback loop in order to optimize the photoexcitation of the Rb2 molecules, which subsequently undergo ionization or fragmentation. A superior performance of the resulting pulses compared to unshaped pulses of the same pulse energy is obtained by distributing the energy among specific spectral components. The demonstration of coherent control to ultracold ensembles opens a path to actively influence fundamental photo-induced processes in molecular quantum gases.
Single He nanodroplets doped with Xe atoms are studied via ultrafast coherent x-ray diffraction imaging. The diffraction images show that rotating He nanodroplets about 200 nm in diameter contain a small number of symmetrically arranged quantum vortices decorated with Xe clusters. Unexpected large distances of the vortices from the droplet center (≈0.7–0.8 droplet radii) are explained by a significant contribution of the Xe dopants to the total angular momentum of the droplets and a stabilization of widely spaced vortex configurations by the trapped Xe clusters
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.