Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.
Helium droplets spanning a wide size range, N(He) = 10(3)-10(10), were formed in a continuous-nozzle beam expansion at different nozzle temperatures and a constant stagnation pressure of 20 bars. The average sizes of the droplets have been obtained by attenuation of the droplet beam through collisions with argon and helium gases at room temperature. The results obtained are in good agreement with previous measurements in the size range N(He) = 10(5)-10(7). Moreover, the measurements give the average sizes in the previously uncharacterized range of very large droplets of 10(7)-10(10) atoms. The droplet sizes and beam flux increase rapidly at nozzle temperatures below 6 K, which is ascribed to the formation of droplets within the nozzle interior. The mass spectra of the droplet beam upon electron impact ionization have also been obtained. The spectra show a large increase in the intensity of the He(4) (+) signal upon increase of the droplet size, an effect which can be used as a secondary size standard in the droplet size range N(He) = 10(4)-10(9) atoms.
We report on the observation of vortices in superfluid 4He droplets produced in the expansion of liquid He. The vortices were traced by introducing Ag atoms, which clustered along the vortex lines, into the droplets. The Ag clusters were subsequently surface-deposited and imaged via electron microscopy. The prevalence of elongated track-shaped deposits shows that vortices are present in droplets larger than about 300 nm and that their lifetime exceeds a few milliseconds. We discuss the possible formation mechanisms and the stability of the vortices.
The utility of a continuous beam of He droplets for the assembly and surface deposition of Ag N clusters,
Ag(N) clusters with up to thousands of atoms were grown in large He droplets and studied by optical spectroscopy. For N≲10(3) the spectra are dominated by a surface plasmon resonance near 3.8 eV and a broad feature in the UV, consistent with absorption by individual metallic particles. Larger clusters reveal unexpectedly strong broad absorption at low frequencies, extending down to ≈0.5 eV. This suggests a transition from single-center to multicenter formation, in agreement with estimates of cluster growth kinetics in He droplets. Moreover, the spectra of large clusters develop a characteristic dispersion profile at 3.5-4.5 eV, indicative of the coexistence of localized and delocalized electronic excitations in composite clusters, as predicted theoretically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.