Archaeological Heritage, naturally endangered by environmental processes and anthropogenic pressures, is today increasingly at risk, because of intense human activities and climate change, and their impact on atmosphere and soil. European research is increasingly dedicated to the development of good practices for monitoring archaeological sites and their preservation. One of the running projects about these topics is RESEARCH (Remote Sensing techniques for Archaeology; H2020-MSCA-RISE, grant agreement: 823987), started in 2018 and ending in 2022. RESEARCH aims at testing risk assessment methodology using an integrated system of documentation and research in the fields of archaeology and environmental studies. It will introduce a strategy and select the most efficient tools for the harmonization of different data, criteria, and indicators in order to produce an effective risk assessment. These will be used to assess and monitor the impact of soil erosion, land movement, and land-use change on tangible archaeological heritage assets. As a final product, the Project addresses the development of a multi-task thematic platform, combining advanced remote sensing technologies with GIS application. The demonstration and validation of the Platform will be conducted on six case studies located in Italy, Greece, Cyprus, and Poland, and variously affected by the threats considered by the Project. In the frame of RISE (Research and Innovation Staff Exchange), RESEARCH will coordinate the existing expertise and research efforts of seven beneficiaries into a synergetic plan of collaborations and exchanges of personnel (Ph.D. students and research staff), to offer a comprehensive transfer of knowledge and training environment for the researchers in the specific area. This paper aims at illustrating the results of the activities conducted during the first year of the Project, which consisted in developing an effective risk assessment methodology for soil-related threats affecting archaeological heritage, and defining the scientific requirements and the user requirements of the Platform. The activities have been conducted in synergy with all the Partners and were supported by the possibility of staff exchange allowed by the funding frame MSCA-RISE.
The RESEARCH project (Remote Sensing techniques for Archaeology; H2020-MSCA-RISE, 2018-2022, grant agreement: 823987) addresses the design and development of a multi-task platform, combining advanced remote sensing technologies with Geographical Information System (GIS) application for mapping and long-term monitoring of Archaeological Heritage (AH) at risk, to identify changes due to climate change and anthropic pressures. The Earth Observation (EO) processing chain will address significant risks affecting AH including soil erosion, land movement and land-use change. The paper describes one of the main goals of RESEARCH project. It refers to a state of the art analysis of Synthetic Aperture Radar (SAR) methods applied to the land movement detection such as landslide and subsidence. Satellite SAR is a rapidly evolving remote sensing technology that offers a high potential for detecting, documenting and monitoring heritage targets. Satellite SAR interferometry (InSAR), Differential Interferometry (DinSAR) and Persistent Scatterer Interferometry (PSI) are different techniques that, depending on the available data and the required accuracy, can be used for deformation monitoring of AH.
Ground-penetrating radar (GPR) is a precious and reliable research tool broadly used in archaeology because of its capacity to produce three-dimensional data about features preserved underground, such as buildings, infrastructures, and burials, as well as building rubble. GPR data (time-slices) management and exploitation in Geographic Information Systems (GIS) is mostly limited to the visualization and the manual interpretation and mapping of separate single time-slices. This study presents a newly developed plug-in designed to automatically post-process GPR time-slices in a GIS environment, to identify anomalies, and to produce a synchronic view of them. This map product, when combined with a DTM, results in a 2D map of subsurface anomalies which shows the absolute height of features above sea level, thus offering a comprehensive view of the three-dimensional configuration of the subsurface features identified. The paper illustrates the pixel-based processing chain of the plug-in and the results of the tests carried out in the case study of the Roman town of Falerii Novi (Italy), on the basis of high-resolution open access GPR data recently collected by the University of Cambridge and Ghent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.