In autosomal dominant polycystic kidney disease (ADPKD), renal cyst development and enlargement, as well as cell growth, are associated with alterations in several pathways, including cAMP and activator protein 1 (AP1) signalling. However, the precise mechanism by which these molecules stimulate cell proliferation is not yet fully understood. We now show by microarray analysis, luciferase assay, mutagenesis, and chromatin immunoprecipitation that CREB and AP1 contribute to increased expression of the amphiregulin gene, which codifies for an epidermal growth factor-like peptide, in ADPKD cystic cells, thereby promoting their cell growth. Increased amphiregulin (AR) expression was associated with abnormal cell proliferation in both PKD1-depleted and -mutated epithelial cells, as well as primary cystic cell lines isolated from ADPKD kidney tissues. Consistently, normal AR expression and proliferation were re-established in cystic cells by the expression of a mouse full-length PC1. Finally, we show that anti-AR antibodies and inhibitors of AP1 are able to reduce cell proliferation in cystic cells by reducing AR expression and EGFR activity. AR can therefore be considered as one of the key activators of the growth of human ADPKD cystic cells and thus a new potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.