Nitrated fatty acids (nitroalkenes) have been recently detected and quantified in cell membranes and human plasma. However, nitration of arachidonate (AA), that could redirect AA-dependent cell signaling pathways, has not been studied in detail. Herein, we synthesized and determined for the first time the isomer distribution of nitroarachidonate (AANO2) and demonstrate its ability to modulate inflammation. Synthesis of AANO2 was achieved by AA treatment with sodium nitrite in acidic conditions following HPLC separation. Mass spectrometry (MS) analysis showed the characteristic MS/MS transition of AANO2 (m/z 348/301). Moreover, the IR signal at 1378.3 cm(-1) and NMR studies confirmed the presence of mononitrated nitroalkenes. Positional isomer distribution was determined by NMR and MS fragmentation with lithium; four major isomers (9-, 12-, 14-, and 15-AANO2) were identified, which exhibited key anti-inflammatory properties. These include their ability to release biologically relevant amounts of nitric oxide, induce cGMP-dependent vasorelaxation, and down-regulate inducible nitric oxide synthase (NOS2) expression during macrophage activation, providing unique structural evidence and novel regulatory signaling properties of AANO2.
Objective of the StudyDiabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis.Methodology and Principal FindingsStreptozotocin (STZ)-induced diabetes in apolipoprotein E−/− mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice.ConclusionsTargeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.