The aim of this study was to assess the influence of the wall materials on the microencapsulation of pequi oil. An emulsion containing pequi oil in the oil phase was microencapsulated by spray drying process at 120 °C using gum Arabic, maltodextrin, or a 25:75 (w/w) mixture of gum Arabic and maltodextrin as wall material. The emulsions were characterized for droplet size, Polydispersity Index (PDI), and zeta potential. Pequi oil microparticles were analyzed for moisture content, water activity, wettability, encapsulation efficiency, antioxidant capacity, and color. Ultrastructural examination was performed by Scanning Electron Microscopy (SEM). The Droplet Size Distribution (DSD) of the emulsions exhibited a relatively wide size distribution (2.67 to 8.96 μm) and high PDI (> 0.3). Smooth microparticles with high encapsulation efficiency (79.17% to 84.20%), and good antioxidant capacity (28.20 to 28.71 μmol Trolox equivalents/g dry extract) were obtained. Microparticles prepared using gum Arabic as wall material had higher antioxidant capacity than that prepared with maltodextrin. All microparticles had satisfactory encapsulation efficiency, water activity, moisture content, and wettability. These results indicate that pequi oil microparticles have characteristics that can contribute to good stability during storage and handling of encapsulated oil. Therefore, pequi oil can be successfully encapsulated by spray drying using gum Arabic, maltodextrin, or 25:75 (w/w) mixture of gum Arabic and maltodextrin as wall materials, but the physicochemical properties of microparticles vary with wall material composition.
The increasing use of non‐biodegradable materials and the difficulty in recycling most of the available packaging have been pushing the development of biodegradable packaging. In this study, the potential uses of agroindustrial wastes to produce biodegradable films with antioxidant capacity were investigated. Starch films were produced by casting method using bran from jaboticaba peel, mango peel, and broccoli stalk. The influence of the concentration or type of bran in the properties of the films was evaluated through a central composite design. The results were analyzed by response surface and desirability function. Except for elongation and water solubility, the fitted equations were predictive in all studied properties. The films prepared from a higher concentration of mango peel exhibited better antioxidant capacity, while the broccoli stalk had no significant effect on antioxidant properties. The optimal formulation of the film (2.8% of jaboticaba peel and 20.0% of mango peel) and their predicted response variables (0.8 MPa for tensile strength, 40.0 MPa for Young's modulus, 4.5 mg/ml for IC50, and 41.6% for inhibition percentage) were defined according to the results. The optimization was satisfactory and the film presented high antioxidant capacity and moderate mechanical properties, proving to be an alternative to replace plastic packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.