Artificial lighting is one of the most powerful management tools available to commercial layer producers. Artificial light allows anticipating or delaying the beginning of lay, improving egg production, and optimizing feed efficiency. This study aimed at comparing the performance of commercial layers submitted to lighting using different LED colors or conventional incandescent lamps. The study was carried out in a layer house divided in isolated environments in order to prevent any influenced from the neighboring treatments. In total, 360 Isa Brown layers, with an initial age of 56 weeks, were used. The following light sources were used: blue LED, yellow LED, green LED, red LED, white LED, and 40W incandescent light. Birds in all treatment were submitted to a 17-h continuous lighting program, and were fed a corn and soybean meal-based diet. A completely randomized experimental design with subplots was applied, with 24 treatments (six light sources and four periods) of three replicates. Egg production (%) was significantly different (p<0.05) among treatments, with the best results obtained with red LED, white LED, and incandescent light sources. Egg weight, feed intake, and internal egg quality (albumen height, specific gravity, and Haugh units) were not influenced (p>0.05) by light source. It was concluded that the replacement of incandescent light bulbs by white and red LEDs does not cause any negative effect on the egg production of commercial layers.
It is known that PSE meat present important functional defects, such as low water holding capacity and ultimate pH, which may compromise the quality of further-processed meat products. In this study, L* (lightness), a* (redness), and b* (yellowness) values of 500 chicken breast fillets were determined using a portable colorimeter (Minolta, model CR-400) in a commercial processing plant. Fillets were considered pale when their L* was ≥49. Out of those samples, 30 fillets with normal color and 30 pale fillets were evaluated as to pH, drip loss, cooking loss, water holding capacity, shear force, and submitted to sensorial analysis. An incidence of 10.20% PSE meat was determined. Pale and normal fillets presented significantly different (p≤0.05) pH values, L* and a* values, water holding capacity, drip loss, and cooking loss, demonstrating changes in the physical properties of PSE meat. Shear force and sensorial characteristics were not different (p>0.05) between pale and normal fillets. Despite the significant differences in meat physical properties, these were not perceived by consumers in terms of tenderness, aspect, and flavor. The observed incidence of PSE may cause losses due to its low water retention capacity. INTRODUCTIONPoultry meat production has undergone many changes in the last few years. Parts are increasingly sold relative to whole carcasses. Moreover, there is an increasing number of further-processed products, such as nuggets, breaded and other ready-to-cook and ready-to-eat products, available in the market. However, the quality of these products is directly related to the quality of the meat used to prepare them.According to the Brazilian Poultry Association (União Brasileira de Avicultura -UBA, 2008), Brazilian chicken production exceeded the volumes sold in previous years both in the domestic and international markets. Exporters expect to obtain significant increase in sales, particularly as new markets are opened. One of the factors that allowed Brazil to become the largest global chicken meat exporter in terms of revenue was the increase in the sales of chicken parts and further-processed products, which have higher added value.A significant proportion of chickens is deboned for breast exports, and consequently, meat quality defects, such as PSE (pale, dry, and exudative meat), result in important losses for chicken meat industry. In addition, taking into account the increasing number of further-processed chicken meat products in the last few years, it is essential for processors to have correct information on PSE meat (Komiyama, 2006). PSE meat is a meat quality defect that affects important meat physical properties, such as water holding capacity and ultimate pH, which may reduce the quality of further processed chicken meat products (Komiyama, 2006
The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.