The generalized and extended uncertainty principles affect the Newtonian gravity and also the geometry of the thermodynamic phase space. Under the influence of the latter, the energy-temperature relation of ideal gas may change. Moreover, it seems that the Newtonian gravity is modified in the framework of the Rényi entropy formalism motivated by both the long-range nature of gravity, and the extended uncertainty principle. Here, the consequences of employing the generalized and extended uncertainty principles, instead of the Heisenberg uncertainty principle, on the Jeans mass are studied. The results of working in the Rényi entropy formalism are also addressed. It is shown that unlike the extended uncertainty principle and the Rényi entropy formalism which lead to the same increase in the Jeans mass, the generalized uncertainty principle can decrease it. The latter means that a cloud with mass smaller than the standard Jeans mass, obtained in the framework of the Newtonian gravity, may also undergo the gravitational collapse process.
The Sagnac effect is usually considered as being a relativistic effect produced in an interferometer when the device is rotating. General relativistic explanations are known and already widely explained in many papers. Such general relativistic approaches are founded on Einstein's equivalence principle (EEP), which states the equivalence between the gravitational "force" and the pseudo-force experienced by an observer in a non-inertial frame of reference, included a rotating observer. Typically, the authors consider the so-called Langevin-Landau-Lifschitz metric and the path of light is determined by null geodesics. This approach partially hides the physical meaning of the effect. It seems indeed that the light speed varies by c ± ωr in one or the other direction around the disk. In this paper, a slightly different general relativistic approach will be used.The different "gravitational field" acting on the beam splitter and on the two rays of light is analyzed. This different approach permits a better understanding of the physical meaning of the Sagnac effect.
Following Rosen's quantization rules, two of the authors (C. Corda and F. Feleppa) recently described the Schwarzschild black hole (BH) formed after the gravitational collapse of a pressureless “star of dust” in terms of a “gravitational hydrogen atom”. Here we generalize this approach to the gravitational collapse of a charged object, namely, to the geometry of a Reissner-Nordström BH (RNBH) and calculate the gravitational potential, the Schrödinger equation and the exact solutions of the energy levels of the gravitational collapse. By using the concept of BH effective state, previously introduced by one of us (CC), we describe the quantum gravitational potential, the mass spectrum and the energy spectrum for the extremal RNBH. The area spectrum derived from the mass spectrum finds agreement with a previous result by Bekenstein. The stability of these solutions, described with the Majorana approach to the Archaic Universe scenario, shows the existence of oscillatory regimes or exponential damping for the evolution of a small perturbation from a stable state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.