During the last years, the new science of cities has been established as a fertile quantitative approach to systematically understand the urban phenomena. One of its main pillars is the proposition that urban systems display universal scaling behavior regarding socioeconomic, infrastructural and individual basic services variables. This paper discusses the extension of the universality proposition by testing it against a broad range of urban metrics in a developing country urban system. We present an exploration of the scaling exponents for over 60 variables for the Brazilian urban system. Estimating those exponents is challenging from the technical point of view because the Brazilian municipalities’ definition follows local political criteria and does not regard characteristics of the landscape, density, and basic utilities. As Brazilian municipalities can deviate significantly from urban settlements, urban-like municipalities were selected based on a systematic density cut-off procedure and the scaling exponents were estimated for this new subset of municipalities. To validate our findings we compared the results for overlaying variables with other studies based on alternative methods. It was found that the analyzed socioeconomic variables follow a superlinear scaling relationship with the population size, and most of the infrastructure and individual basic services variables follow expected sublinear and linear scaling, respectively. However, some infrastructural and individual basic services variables deviated from their expected regimes, challenging the universality hypothesis of urban scaling. We propose that these deviations are a product of top-down decisions/policies. Our analysis spreads over a time-range of 10 years, what is not enough to draw conclusive observations, nevertheless we found hints that the scaling exponent of these variables are evolving towards the expected scaling regime, indicating that the deviations might be temporally constrained and that the urban systems might eventually reach the expected scaling regime.
Socio-economic related properties of a city grow faster than a linear relationship with the population, in a log–log plot, the so-called superlinear scaling. Conversely, the larger a city, the more efficient it is in the use of its infrastructure, leading to a sublinear scaling on these variables. In this work, we addressed a simple explanation for those scaling laws in cities based on the interaction range between the citizens and on the fractal properties of the cities. To this purpose, we introduced a measure of social potential which captured the influence of social interaction on the economic performance and the benefits of amenities in the case of infrastructure offered by the city. We assumed that the population density depends on the fractal dimension and on the distance-dependent interactions between individuals. The model suggests that when the city interacts as a whole, and not just as a set of isolated parts, there is improvement of the socio-economic indicators. Moreover, the bigger the interaction range between citizens and amenities, the bigger the improvement of the socio-economic indicators and the lower the infrastructure costs of the city. We addressed how public policies could take advantage of these properties to improve cities development, minimizing negative effects. Furthermore, the model predicts that the sum of the scaling exponents of social-economic and infrastructure variables are 2, as observed in the literature. Simulations with an agent-based model are confronted with the theoretical approach and they are compatible with the empirical evidences.
This paper is an extension of a previous work which proposes a non-phenomenological model of population growth that is based on the interactions among the individuals of a population. In addition to what had already been studied—that the individuals interact competitively—in the present work it is also considered that the individuals interact cooperatively. As a consequence of this new consideration, a richer dynamics is observed. For instance, besides getting the population models already reached from the original version of the model (as the Malthus, Verhulst, Gompertz, Richards, Bertalanffy and power-law growth models), the new formulation also reaches the von Foerster growth model and also a regime of divergence of the population at a finite time. An agent-based model is also presented in order to give support to the analytical results. Moreover, this new approach of the model explains the Allee effect as an emergent behavior of the cooperative and competitive interactions among the individuals. The Allee effect is the characteristic of some populations of increasing the population growth rate in a small-sized population. Whereas the models presented in the literature explain the Allee effect with phenomenological ideas, the model presented here explains this effect by the interactions between the individuals. The model is tested with empirical data to justify its formulation. Another interesting macroscopic emergent behavior from the model proposed is the observation of a regime of population divergence at a finite time. It is interesting that this characteristic is observed in humanity's global population growth. It is shown that in a regime of cooperation, the model fits very well to the human population growth data from 1000 AD to nowadays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.