Measuring the optical signal to noise ratio (OSNR) at certain network points is essential for failure handling, for single connection but also global network optimization. Estimating OSNR is inherently difficult in dense wavelength routed networks, where connections accumulate noise over different paths and tight filters do not allow the observation of the noise level at signal sides. We propose an in-band OSNR estimation process, which relies on a machine learning (ML) method, in particular on Gaussian process (GP) or support vector machine (SVM) regression. We acquired high-resolution optical spectra, through an experimental setup, using a Brillouin optical spectrum analyzer (BOSA), on which we applied our method and obtained excellent estimation accuracy. We also verified the accuracy of this approach for various resolution scenarios. To further validate it, we generated spectral data for different configurations and resolutions through simulations. This second validation confirmed the estimation quality of the proposed approach.
Channel spectral monitors are becoming a cost effective solution to improve the management, resiliency and efficiency of next generation optical transport networks. We experimentally demonstrate a technique based on machine learning (ML) for the in-band estimation of amplified spontaneous emission (ASE) noise and filter 3-dB bandwidth, using optical spectra acquired after the reconfigurable optical add/drop multiplexers (ROADMs) filters. We assess the performance of the proposed method, considering laser drift and filters bandwidth tightening scenarios, showing quite good estimation accuracy under such conditions.
Having ubiquitous optical monitors in dense wavelength-division multiplexing (DWDM) or flex-grid networks allows the estimation in real time of crucial parameters. Such monitoring would be even more important in disaggregated optical networks, to inspect performance issues related to inter-vendor interoperability. Several important parameters can be retrieved using optical spectrum analyzers (OSAs). However, omnipresent OSAs represents an infeasible solution. Nevertheless, the advent of new, relatively cheap, compact and medium-resolution optical channel monitors (OCMs) enable a more intensive deployment of these devices. In this paper, we identify two main scenarios for the placement of such monitors: at the ingress and at the egress of the optical nodes. In the ingress scenario, we can directly estimate the parameters related to the signals, but not those related to the filters. On the contrary, in the egress scenario, the filter related parameters can be easily detected, but not those related to ASE. Therefore, we present two methods that, leveraging a curve fitting and a machine learning (ML) regression algorithm, allow to detect the missing parameters. We verify the proposed solutions with spectral data acquired in simulation and experimental setups. We obtained good estimation accuracy for both setups and for both studied placement scenarios. Noteworthy, in the experimental assessment of the ingress scenario, we achieved a maximum absolute error (MAE) lower than 1 GHz in filter bandwidth estimation and a MAE lower than 0.5 GHz in filter frequency shift estimation. In addition, by comparing the relative errors of the considered parameters, we identified the ingress scenario as the more beneficial. In particular, we estimated the filter central frequency shift with 84% and the filter 6-dB bandwidth with 75% higher accuracy, with respect to datasheet/reference values. This translates into a total reduction of the estimated signal-to-noise ratio (SNR) penalty, introduced by a single optical filter, of 0.24 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.