Long‐term ecological success of large‐scale restoration programs planned for the next decades will rely on genetic diversity (GD) of reintroduced or colonizing species, a limiting factor in highly fragmented landscapes. In small and isolated natural remnants or restoration areas, substantial reduction in population's size or connectivity may lead to local extinctions due to the accumulation of deleterious recessive alleles and ongoing reduction of fecundity, plant vigor, recruitment success, and adaptive potential. Despite the paramount role of GD for species persistence, its levels in restoration programs are poorly known. We assessed the GD of four model tree species (different succession stages, dispersal, and pollination syndromes) from the Brazilian Atlantic Forest, comparing two high‐diversity restoration plantations, one forest fragment and one conserved remnant. Contrary to the expectation that the plantation strategies adopted in the restoration programs could result in genetic composition homogenization, we found that restoration areas established heterogeneous genetic groups with similar levels of neutral GD and inbreeding to those observed in natural forest remnants. This pattern was consistent across the four functionally different tree species, despite some species idiosyncrasies. For instance, we observed lower allelic richness in early successional species in restoration sites, suggesting that some species may be more prone to reintroduction with lower GD. Thus, we advocate the use of high GD levels in restoration to support biodiversity conservation in human‐modified landscapes, thus reinforcing the role of ecological restoration for recovering the diversity of genes—the basic constituent of biodiversity.
ABSTRACT. Guaçatonga (Casearia sylvestris) is a native plant of the Atlantic Forest, with high medicinal potential and relevance for reforestation programs. The aim of this study was to characterize, with microsatellite markers, two populations of C. sylvestris from remaining areas of the Atlantic Forest in the State of São Paulo. High allelic variation was found in both populations (N A = 101 and 117; A R = 12.5 and 14.4), although with high endogamy coefficients (f = 0.640 and 0.363). Estimates of genetic structure suggested the presence of considerable genetic divergence between the populations (F ST = 0.103); however, there was no spatial genetic structure within the populations. Genetic divergence may have occurred due to decreased gene flow between the fragmented populations as the result of deforestation. The results of this study demonstrate the importance of genetic diversity and its characterization in native plants within remaining forest areas for the management and restoration of such areas.
The primary focus of tropical forest restoration has been the recovery of forest structure and tree taxonomic diversity, with limited attention given to genetic conservation. Populations reintroduced through restoration plantings may have low genetic diversity and be genetically structured due to founder effects and genetic drift, which limit the potential of restoration to recover ecologically resilient plant communities. Here, we studied the genetic diversity, genetic structure and differentiation using single nucleotide polymorphisms (SNP) markers between restored and natural populations of the native tree Casearia sylvestris in the Atlantic Forest of Brazil. We sampled leaves from approximately 24 adult individuals in each of the study sites: two restoration plantations (27 and 62 years old) and two forest remnants. We prepared and sequenced a genotyping-by-sequencing library, SNP markers were identified de novo using Stacks pipeline, and genetic parameters and structure analyses were then estimated for populations. The sequencing step was successful for 80 sampled individuals. Neutral genetic diversity was similar among restored and natural populations (AR = 1.72 ± 0.005; HO = 0.135 ± 0.005; HE = 0.167 ± 0.005; FIS = 0.16 ± 0.022), which were not genetically structured by population subdivision. In spite of this absence of genetic structure by population we found genetic structure within populations but even so there is not spatial genetic structure in any population studied. Less than 1% of the neutral alleles were exclusive to a population. In general, contrary to our expectations, restoration plantations were then effective for conserving tree genetic diversity in human-modified tropical landscapes. Furthermore, we demonstrate that genotyping-by-sequencing can be a useful tool in restoration genetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.