Abstract. Laboratory experiments involving vacuum ultraviolet (VUV) irradiation of solid isocyanic acid (HNCO) at 10 K, followed by infrared spectroscopy (FTIR), are used to interpret the complex spectra associated with Interstellar Medium (ISM) dust grains, particularly the spectra associated with the icy phase observed toward dense molecular clouds. The comparison of the infrared spectra of the photolysis products with spectra recorded from the protostellar source NGC 7538 IRS9 shows that the "unexplained" 1700 cm −1 feature can be attributed to the contribution of several species H 2 CO (formaldehyde), HCONH 2 (formamide) and H 2 NCONH 2 (urea) mixed with H 2 O as the main contributor. Urea, formaldehyde and NH− (ammonium cyanate) may also contribute to a band at 1470 cm −1 , widely observed in many protostellar infrared sources and which remains up to now poorly explained in numerous ISO-SWS spectra. Isocyanic acid could be a precursor of formamide and urea in interstellar ices.
ContextMethods. Infrared and mass spectroscopy are used to monitor NH 3 :CO 2 ice mixture evolution during both warming and VUV photon irradiation.Results. Carbamic acid and ammonium carbamate can be produced thermally in a 1:1 ratio from NH 3 and CO 2 above 80 K. They can be also formed in a 28:1 ratio by less efficient processes such as energetic photons. Our study and its results provide fresh insight into carbamic acid formation in interstellar ices. Conclusions. We demonstrate that care is required to separate irradiation-induced reactivity from purely thermal reactivity in ices in which ammonia and carbon dioxide are both present. From an interstellar chemistry point of view, carbamic acid and ammonium carbamate are readily produced from the ice mantle of a typical interstellar grain and should therefore be a detectable species in molecular clouds.
Context. Hydrogenation reactions dominate grain surface chemistry in dense molecular clouds and lead to the formation of complex saturated molecules in the interstellar medium. Aims. We investigate in the laboratory the hydrogenation reaction network of hydrogen cyanide HCN. Methods. Pure hydrogen cyanide HCN and methanimine CH 2 NH ices are bombarded at room temperature by H-atoms in an ultra-high vacuum experiment. Warm H-atoms are generated in an H 2 plasma source. The ices are monitored with Fourier-transform infrared spectroscopy in reflection absorption mode. The hydrogenation products are detected in the gas phase by mass spectroscopy during temperature-programmed desorption experiments. Results. HCN hydrogenation leads to the formation of methylamine CH 3 NH 2 , and CH 2 NH hydrogenation leads to the formation of methylamine CH 3 NH 2 , suggesting that CH 2 NH can be a hydrogenation-intermediate species between HCN and CH 3 NH 2 . Conclusions. In cold environments the HCN hydrogenation reaction can produce CH 3 NH 2 , which is known to be a glycine precursor, and to destroy solid-state HCN, preventing its observation in molecular clouds ices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.