Abstract:Spacecrafts provide a large set of on-board components information such as their temperature, power and pressure. This information is constantly monitored by engineers, who capture the outliers and determine whether the situation is abnormal or not. However, due to the large quantity of information, only a small part of the data is being processed or used to perform anomaly prediction. A common accepted research concept for anomaly prediction as described in literature yields on using projections, based on probabilities, estimated on learned patterns from the past (Fujimaki et al., 2005) and data mining methods to enhance the conventional diagnosis approach (Li et al., 2010). Most of them conclude on the need to build a status vector. We propose an algorithm for efficient outlier detection that builds an identity chart of the patterns using the past data based on their curve fitting information. It detects the functional units of the patterns without apriori knowledge with the intent to learn its structure and to reconstruct the sequence of events described by the signal. On top of statistical elements, each pattern is allotted a characteristics chart. This pattern identity enables fast pattern matching across the data. The extracted features allow classification with regular clustering methods like support vector machines (SVM). The algorithm has been tested and evaluated using real satellite telemetry data. The outcome and performance show promising results for faster anomaly prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.