The HAMSTRAD (H 2 O Antarctica Microwave Stratospheric and Tropospheric Radiometers) microwave radiometer operating at 60 GHz (oxygen line, thus temperature) and 183 GHz (water vapour line) has been permanently deployed at the Dome C station, Concordia, Antarctica [75 • 06 S, 123 • 21 E, 3,233 m above mean sea level] in January 2010 to study long-term trends in tropospheric absolute humidity and temperature. The great sensitivity of the instrument in the lowermost troposphere helped to characterize the diurnal cycle of temperature and H 2 O from the austral summer (January 2010) to the winter (June 2010) seasons from heights of 10 to 200 m in the planetary boundary layer (PBL). The study has characterized the vertical resolution of the HAMSTRAD measurements: 10-20 m for 123 228 P. Ricaud et al.temperature and 25-50 m for H 2 O. A strong diurnal cycle in temperature and H 2 O (although noisier) has been measured in summertime at 10 m, decreasing in amplitude with height, and phase-shifted by about 4 h above 50 m with a strong H 2 O-temperature correlation (>0.8) throughout the entire PBL. In autumn, whilst the diurnal cycle in temperature and H 2 O is less intense, a 12-h phase shift is observed above 30 m. In wintertime, a weak diurnal signal measured between 10 to 200 m is attributed to the methodology employed, which consists of monthly averaged data, and that combines air masses from different origins (sampling effect) and not to the imprint of the null solar irradiation. In situ sensors scanning the entire 24-h period, radiosondes launched at 2000 local solar time (LST) and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses at 0200, 0800, 1400 and 2000 LST agree very well with the HAMSTRAD diurnal cycles for temperature and relatively well for absolute humidity. For temperature, HAMSTRAD tends to be consistent with all the other datasets but shows a smoother vertical profile from 10 to 100 m compared to radiosondes and in-situ data, with ECMWF profiles even smoother than HAMSTRAD profiles, and particularly obvious when moving from summer to winter. For H 2 O, HAMSTRAD measures a much moister atmosphere compared to all the other datasets with a much weaker diurnal cycle at 10 m. Our study has helped characterize the time variation of the PBL at Dome C with a top around 200 m in summertime decreasing to 30 m in wintertime. In summer, from 2000 to 0600 LST a stable layer is observed, followed by a well-mixed layer the remaining time, while only a nocturnal stable layer remains in winter. In autumn, a daytime convective layer shallower than the nocturnal stable layer develops.
Abstract. The objective of this paper is to deliver the most accurate ozone (O 3 ) and carbon monoxide (CO) climatology for the pure troposphere only, i.e. exclusively from the ground to the dynamical tropopause on an individual profile basis. The results (profiles and columns) are derived solely from the Measurements of OZone and water vapour by in-service AIrbus airCraft programme (MOZAIC) over 15 years (1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009). The study, focused on the northern midlatitudes • N] and [119 • W-140 • E], includes more than 40 000 profiles over 11 sites to give a quasi-global zonal picture. Considering all the sites, the pure tropospheric column peak-to-peak seasonal cycle ranges are 23.7-43.2 DU for O 3 and 1.7-6.9 × 10 18 molecules cm −2 for CO. The maxima of the seasonal cycles are not in phase, occurring in February-April for CO and May-July for O 3 . The phase shift is related to the photochemistry and OH removal efficiencies. The purely tropospheric seasonal profiles are characterized by a typical autumn-winter/spring-summer O 3 dichotomy (except in Los Angeles, Eastmed -a cluster of Cairo and Tel Aviv -and the regions impacted by the summer monsoon) and a summer-autumn/winter-spring CO dichotomy. We revisit the boundary-layer, mid-tropospheric (MT) and uppertropospheric (UT) partial columns using a new monthly varying MT ceiling. Interestingly, the seasonal cycle maximum of the UT partial columns is shifted from summer to spring for O 3 and to very early spring for CO. Conversely, the MT maximum is shifted from spring to summer and is associated with a summer (winter) MT thickening (thinning). Lastly, the pure tropospheric seasonal cycles derived from our analysis are consistent with the cycles derived from spaceborne measurements, the correlation coefficients being r = 0.6-0.9 for O 3 and r > 0.9 for CO. The cycles observed from space are nevertheless greater than MOZAIC for O 3 (by 9-18 DU) and smaller for CO (up to 1 × 10 18 molecules cm −2 ). The larger winter O 3 difference between the two data sets suggests probable stratospheric contamination in satellite data due to the tropopause position. The study underlines the importance of rigorously discriminating between the stratospheric and tropospheric reservoirs and avoiding use of a monthly averaged tropopause position without this strict discrimination in order to assess the pure O 3 and CO tropospheric trends.
International audienceThe HAMSTRAD microwave instrument operates at 60 and 183 GHz and measures temperature and water vapor, respectively, from 0- to 10-km altitude with a time resolution of 7 min. The radiometer has been successfully deployed at Dome C (Concordia Station), Antarctica (75°06' S, 123°21' E, 3233 m amsl) during the first summertime campaign for 12 days in January-February 2009. The radiometer has been continuously running since January 2010, hosted within a dedicated shelter. We have used the very first set of HAMSTRAD data, recorded when the instrument was outdoors, to assess its potential to sound the troposphere over Dome C, from the planetary boundary layer (PBL) up to the tropopause ( ~ 6 km above surface, ~ 9 km amsl). We have compared the HAMSTRAD measurements to several sets of measurements performed at the Dome-C station or in its vicinity: meteorological radiosondes, in situ PT100 and Humicap sondes along the vertical extent of a 45-m tower, meteorological sensor attached to the HAMSTRAD instrument, and the spaceborne Infrared Atmospheric Sounding Interferometer (IASI) instrument onboard the EUMETSAT MetOp-A satellite in polar orbit. The variability of integrated water vapor (IWV) observed by HAMSTRAD with extremely low values of 0.5 kg *m-2 was also measured by the radiosondes (very high HAMSTRAD versus radiosonde correlation of 0.98), whereas IASI cloud-free measurements did not reproduce well the HAMSTRAD IWV variation (weak HAMSTRAD versus IASI correlation of 0.58). The measurements of absolute humidity (H2O) from HAMSTRAD at Dome C cover a large vertical extent from the surface to about 6 km above surface with a high sensitivity in the free troposphere. The strong diurnal variation of H2O observed by the in situ sensors in the PBL is not well detected by the radiometer. In the free troposphere, the HAMSTRAD versus radiosonde H2O correlation can reach 0.8-0.9. Around the tropopause, HAMSTR- D shows the same variability as IASI and radiosondes but with a dry bias of 0.01 g *m-3. HAMSTRAD tends to show a wetter atmosphere by 0.1-0.3 g *m-3 compared with radiosondes from the surface to ~ 2-km altitude and a drier atmosphere above by ~ 0.1g *m-3. The sensitivity of the temperature profiles from HAMSTRAD is very high in the PBL and in the free troposphere but degrades around the tropopause. The strong diurnal signal measured above the surface by HAMSTRAD (3-6 K) is consistent with all the other in situ data sets. The temporal evolution over the 12-day period in the PBL is also consistent with all other data sets (radiosondes, IASI, in situ sondes, and meteorological sensors). In the free troposphere and around the tropopause, the HAMSTRAD temporal evolution is consistent with that observed by radiosondes and IASI, although a cold bias exists compared with IASI and radiosondes around the tropopause. For heights less than 4 km above surface, HAMSTRAD correlates very well with radiosondes and in situ sensors (correlation better than 0.8) but less well with IASI (0.4). Below the tropopause, th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.