Solid-state batteries relying on fluoride-ion shuttle are still at their early stage of development. Assessing the fluoride solid electrolyte's electrochemical stability and its conduction properties in a mixture with carbon, as well as the possible interaction of fluoride-ion with carbon both during the
The electrolyte is an essential component of all electrochemical devices, including lithium‐ion batteries (LIBs). During the initial charging process, a portion of the electrolyte (usually a mixture of organic solvents and lithium salts) decomposes at the anode surface, forming a thin layer of solid electrolyte interface (SEI). This study examines the physicochemical properties of three surfactants: lithium dodecyl sulfate (LiDS), polyoxyethylene ether Forafac 1110D (LiF1110), and lithium perfluoro octanesulfonate Forafac 1185D (LiFOS). Initially, their thermal properties (surface tension and contact angle) are determined. Then, electrochemical tests (cyclic voltammetry, galvanostatic charge‐discharge cycling, and electrochemical impedance spectroscopy) followed by ex‐situ X‐ray photoelectron spectroscopy (XPS) measurements on the graphite anodes in a standard electrolyte ethylene carbonate/propylene carbonate/3 dimethyl carbonate +1 mol L−1 LiPF6 are conducted to compare the surfactants′ action according to their chemical structure, as well as their effect on the interface properties of the formed SEI. The results indicate that surfactants improve electrode interfaces due to their amphiphilic character, preventing the harmful effects of passivation layer salts (LiF, LiOH, Li2O, etc.) that deposit on the graphite interfaces. The three surfactants affect the cycling behavior and performance of the half‐cells differently depending on their ionic or nonionic nature and the polarity or non‐polarity of the salt (e. g., lithium fluoride LiF, lithium oxide Li2O), with LiF1110 demonstrating the best performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.