The European system for fire testing and classification of loadbearing building elements lacks consistency because the two standards that have to be applied prescribe different criteria for assessing the loadbearing performance. This article analyzes the implications of the present conflict between the standard for testing and the standard for classification. The prescribed criteria for loadbearing performance are related to the exceedance of deflection and rate of deflection thresholds. A database of 46 fire resistance tests performed at the University of Liege is collected that contains the time at which these thresholds are reached in fire tests with different typologies of elements (walls, floors, columns and beams). Then, the loadbearing performance (and hence the fire resistance rating) can be derived according to the two standards. The evolutions of deflection and rate of deflection during the tests are also analyzed to gain a better understanding of the adequacy of the standards. The selection of one or the other standard affects the time at which "failure" is deemed to occur in fire tests. Statistically speaking, the difference in terms of failure time that results from using one or the other standard has a 25% probability to exceed 10%. In certain cases, this results in a difference in fire resistance rating; this was observed for 3 of the analyzed tests. The apparent contradiction in two codes in application has potential practical implications and therefore needs to be solved. The article suggests some guidelines for defining homogenized and consistent criteria.
The term “travelling fire” is used to label fires which burn locally and move across the floor over a period of time in large compartments. Through experimental and numerical campaigns and while observing the tragic travelling fire events, it became clear that such fires imply a transient heating of the surrounding structure. The necessity to better characterize the thermal impact generated on the structure by a travelling fire motivated the development of an analytical model allowing to capture, in a simple manner, the multidimensional transient heating of a structure considering the effect of the ventilation. This paper first presents the basic assumptions of a new analytical model which is based on the virtual solid flame concept; a comparison of the steel temperatures measured during a travelling fire test in a steel-framed building with the ones obtained analytically is then presented. The limitations inherent to the analyticity of the model are also discussed. This paper suggests that the developed analytical model can allow for both an acceptable representation of the travelling fire in terms of fire spread and steel temperatures while not being computationally demanding, making it potentially desirable for pre-design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.