Improving fire modelling is a key issue to design efficient safety measures for a safe people evacuation in case of fire. Such an analysis should consider the different impacts of fire on people as temperature, visibility but also toxicity. Most of the standard curves used in tunnel fire studies are based on quite old fire tests without any detailed toxic gas qualification. Very few fire tests were published in that way. Based on those few tests, some standard fire emission factors are available in the literature. The objective of this paper is to review those emission factors considering the different toxic species and dealing with using recent cars. A method is then proposed to define a carbon monoxide equivalent emission factor to consider the different species through their specific threshold. Such an approach can be easily introduced into fire codes. To meet this objective, two series of tests were performed. The first concerns individual combustible materials of cars as plastics and tyres. The second focusses on full car burning tests including a detailed smoke analysis. Those two series of tests lead to an analysis of the smoke toxicity and a comparison of emission factors with standard ones.
In the event of a fire, composite pressure vessels behave very differently from metallic ones: the material is degraded, potentially leading to a burst without significant pressure increase. Hence, such objects are, when necessary, protected from fire by using thermally-activated devices (TPRD), and standards require testing cylinder and TPRD together. The pre-normative research project FireComp aimed at understanding better the conditions which may lead to burst, through testing and simulation, and proposed an alternative way of assessing the fire performance of composite cylinders. This approach is currently used by Air Liquide for the safety of composite bundles carrying large amounts of hydrogen gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.