Genetic mutations cause primary immunodeficiencies (PIDs), which predispose to infections. Here we describe Activated PI3K-δ Syndrome (APDS), a PID associated with a dominant gain-offunction mutation E1021K in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated
The role of PI3K in T cell activation and costimulation has been controversial. We previously reported that a kinase-inactivating mutation (D910A) in the p110δ isoform of PI3K results in normal T cell development, but impaired TCR-stimulated cell proliferation in vitro. This proliferative defect can be overcome by providing CD28 costimulation, which raises the question as to whether p110δ activity plays a role in T cell activation in vivo, which occurs primarily in the context of costimulation. In this study, we show that the PI3K signaling pathway in CD28-costimulated p110δD910A/D910A T cells is impaired, but that ERK phosphorylation and NF-κB nuclear translocation are unaffected. Under in vitro conditions of physiological Ag presentation and costimulation, p110δD910A/D910A T cells showed normal survival, but underwent fewer divisions. Differentiation along the Th1 and Th2 lineages was impaired in p110δD910A/D910A T cells and could not be rescued by exogenous cytokines in vitro. Adoptive transfer and immunization experiments in mice revealed that clonal expansion and differentiation in response to Ag and physiological costimulation were also compromised. Thus, p110δ contributes significantly to Th cell expansion and differentiation in vitro and in vivo, also in the context of CD28 costimulation.
B cell development is controlled by a series of checkpoints that ensure that the immunoglobulin (Ig)-encoding genes are assembled in frame to produce a functional B cell receptor (BCR) and antibodies. The BCR consists of Ig proteins in complex with the immunoreceptor tyrosine-based activation motif (ITAM)-containing Igα and Igβ chains. Whereas the activation of Src and Syk tyrosine kinases is essential for BCR signaling, the pathways that act downstream of these kinases are incompletely defined. Previous work has revealed a key role for the p110δ isoform of phosphoinositide 3-kinase (PI3K) in agonist-induced BCR signaling; however, early B cell development and mature B cell survival, which depend on tonic BCR signaling, are not substantially affected by a deficiency in p110δ. Here, we show that in the absence of p110δ, p110α, but not p110β, can compensate to promote early B cell development in the bone marrow and B cell survival in the spleen. In the absence of both p110α and p110δ activities, pre-BCR signaling fails to suppress the production of recombination-activating gene (Rag) protein and to promote developmental progression of B cell progenitors. By contrast, p110α does not contribute to agonist-induced BCR signaling. These studies indicate that either p110α or p110δ can mediate tonic signaling from the BCR, but that only p110δ can contribute to antigen-dependent activation of B cells.
Activation of PI3K is among the earliest signaling events observed in T cells after conjugate formation with antigenpresenting cells (APCs). The relevant PI3K catalytic isoform and relative contribution of the TcR and CD28 to PI3K activity at the immune synapse have not been determined unequivocally. Using a quantitative imaging-based assay, we show that the PI3K activity at the T cell-APC contact area is dependent on the p110␦, but not the p110␥, isoform of PI3K. CD28 enhanced PIP3 production at the T-cell synapse independently of its YMNM PI3K-recruitment motif that instead was required for efficient PKC recruitment. CD28 could partially compensate for the lack of p110␦ activity during T-cell activation, which indicates that CD28 and p110␦ act in parallel and complementary pathways to activate T cells. Consistent with this, CD28 and p110␦ double-deficient mice were severely immune compromised. We therefore suggest that combined pharmaceutic targeting of p110␦ activity and CD28 costimulation has potent therapeutic potential.
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) negatively regulates cell survival and proliferation mediated by phosphoinositol 3 kinases. We have explored the role of the phosphoinositol(3,4,5)P3-phosphatase PTEN in T cell development by analyzing mice with a T cell–specific deletion of PTEN. Pten flox/flox Lck-Cre mice developed thymic lymphomas, but before the onset of tumors, they showed normal thymic cellularity. To reveal a regulatory role of PTEN in proliferation of developing T cells we have crossed PTEN-deficient mice with mice deficient for interleukin (IL)-7 receptor and pre–T cell receptor (TCR) signaling. Analysis of mice deficient for Pten and CD3γ; Pten and γc; or Pten, γc, and Rag2 revealed that deletion of PTEN can substitute for both IL-7 and pre-TCR signals. These double- and triple-deficient mice all develop normal levels of CD4CD8 double negative and double positive thymocytes. These data indicate that PTEN is an important regulator of proliferation of developing T cells in the thymus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.