Acute promyelocytic leukaemia (APL), associated with chromosomal translocations involving the retinoic acid receptor alpha gene (RARA) and the PML gene, is sensitive to retinoic acid (RA) treatment, while APL patients harbouring translocations between RARA and the PLZF gene do not respond to RA. We have generated PML-RARA and PLZF-RARA transgenic mice and show here that these fusion proteins play a critical role in leukaemogenesis and in determining responses to RA in APL, because PLZF-RARA transgenic mice develop RA-resistant leukaemia, while PML-RARA mice are responsive to RA treatment. We demonstrate that both PML-RARalpha and PLZF-RARalpha fusion proteins can act as transcriptional repressors and are able to interact with nuclear receptor transcriptional co-repressors, such as SMRT. PLZF-RARalpha, but not PML-RARalpha, can form, via its PLZF moiety, co-repressor complexes which are insensitive to RA. Histone deacetylase inhibitors such as Trichostatin A (TSA), in combination with RA, can overcome the transcriptional repressor activity of PML-RARalpha and PLZF-RARalpha as well as the unresponsiveness of PLZF-RARalpha-expressing leukaemic cells to RA. Thus, our findings unravel a crucial role for transcriptional silencing in APL pathogenesis and resistance to RA in APL.
Juvenile myelomonocytic leukemia (JMML) is a rare and severe myelodysplastic and myeloproliferative neoplasm of early childhood initiated by germline or somatic RAS-activating mutations. Genetic profiling and whole-exome sequencing of a large JMML cohort (118 and 30 cases, respectively) uncovered additional genetic abnormalities in 56 cases (47%). Somatic events were rare (0.38 events/Mb/case) and restricted to sporadic (49/78; 63%) or neurofibromatosis type 1 (NF1)-associated (8/8; 100%) JMML cases. Multiple concomitant genetic hits targeting the RAS pathway were identified in 13 of 78 cases (17%), disproving the concept of mutually exclusive RAS pathway mutations and defining new pathways activated in JMML involving phosphoinositide 3-kinase (PI3K) and the mTORC2 complex through RAC2 mutation. Furthermore, this study highlights PRC2 loss (26/78; 33% of sporadic JMML cases) that switches the methylation/acetylation status of lysine 27 of histone H3 in JMML cases with altered RAS and PRC2 pathways. Finally, the association between JMML outcome and mutational profile suggests a dose-dependent effect for RAS pathway activation, distinguishing very aggressive JMML rapidly progressing to acute myeloid leukemia.
Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARa), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominantnegative effect against the wild-type RARa/retinoid X receptor a (RXRa). We now show that its N-terminal region ( (Fig. 1A): C.I, deletion of amino acids 172-348 containing 4 proline-dependent phosphorylation sites; C.II, deletion of amino acids 403-432 corresponding to the first zinc finger structure of PLZF; C.III, deletion of amino acids 432-455, thus lacking the second zinc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.