The completion of the first total synthesis of the complex resin glycoside woodrosin I (1) is outlined using the building blocks described in the preceding paper. Key steps involve the TMSOTf-catalyzed coupling of diol 2 with trichloroacetimidate 3 which leads to the selective formation of orthoester 5 rather than to the expected tetrasaccharide. Diene 5, on treatment with catalytic amounts of the Grubbs carbene complex 6 or the phenylindenylidene ruthenium complex 7, undergoes a high yielding ring closing olefin metathesis reaction (RCM) to afford macrolide 8. Exposure of the latter to the rhamnosyl donor 4 in the presence of TMSOTf under "inverse glycosylation" conditions delivers compound 9 by a process involving glycosylation of the sterically hindered 2'-OH group and concomitant rearrangement of the adjacent orthoester into the desired beta-glycoside. This transformation constitutes one of the most advanced applications of the Kochetkov glycosidation method reported to date. Cleavage of the chloroacetate followed by exhaustive hydrogenation completes the total synthesis of the targeted glycolipid 1.
The preparation of three building blocks required for the total synthesis of woodrosin I (1) is outlined, a complex resin glycoside bearing a macrolide ring which spans four of the five sugars of its oligosaccharide backbone. Key steps involve the enantioselective, titanium-catalyzed addition of dipentylzinc to 5-hexenal, the glycosylation of the resulting alcohol 18 with the glucose-derived trichloroacetimidate 7, and further elaboration of the resulting product 19 into disaccharide 22 on treatment with the orthogonally protected glycosyl donor 15. The trichloroacetimidate method is also used for the formation of the second synthon represented by disaccharide 38. A model study shows that the assembly of the pentasaccharidic perimeter of 1 depends critically on the phasing of the glycosylation events between fragments 22, 38 and the rhamnosyl donor 27 due to the severe steric hindrance in the product. A particularly noteworthy finding is the fact that diol 22 can be regioselectively glycosylated at the 3'-OH group in high yield without protection of the neighboring 2'-OH function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.