The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.
Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12-35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality.
L-Galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) catalyzes the last step in the main pathway of vitamin C (L-ascorbic acid) biosynthesis in higher plants. In this study, we first characterized the spatial and temporal expression of SlGalLDH in several organs of tomato (Solanum lycopersicum) plants in parallel with the ascorbate content. P 35S :SlgalldhRNAi silenced transgenic tomato lines were then generated using an RNAi strategy to evaluate the effect of any resulting modification of the ascorbate pool on plant and fruit development. In all P 35S :SlgalldhRNAi plants with reduced SlGalLDH transcript and activity, plant growth rate was decreased. Plants displaying the most severe effects (dwarf plants with no fruit) were excluded from further analysis. The most affected lines studied exhibited up to an 80% reduction in SlGalLDH activity and showed a strong reduction in leaf and fruit size, mainly as a consequence of reduced cell expansion. This was accompanied by significant changes in mitochondrial function and altered ascorbate redox state despite the fact that the total ascorbate content remained unchanged. By using a combination of transcriptomic and metabolomic approaches, we further demonstrated that several primary, like the tricarboxylic acid cycle, as well as secondary metabolic pathways related to stress response were modified in leaves and fruit of P 35S :Slgalldh RNAi plants. When taken together, this work confirms the complexity of ascorbate regulation and its link with plant metabolism. Moreover, it strongly suggests that, in addition to ascorbate synthesis, GalLDH could play an important role in the regulation of cell growth-related processes in plants.
Tomato, an essential crop in terms of economic importance and nutritional quality, is also used as a model species for all fleshy fruits and for genomics of Solanaceae. Tomato fruit quality at harvest is a direct function of its metabolite content, which in turn is a result of many physiological changes during fruit development. The aim of the work reported here was to develop a global approach to characterize changes in metabolic profiles in two interdependent tissues from the same tomato fruits. Absolute quantification data of compounds in flesh and seeds from 8 days to 45 days post anthesis (DPA) were obtained through untargeted (proton nuclear magnetic resonance, 1 H-NMR) and targeted metabolic profiling (liquid chromatography with diode array detection (LC-DAD) or gas chromatography with flame ionization detection (GC-FID)). These data were analyzed with chemometric approaches. Kohonen self organizing maps (SOM) analysis of these data allowed us to combine multivariate (distribution of samples on Kohonen SOMs) and univariate information (component plane representation of metabolites) in a single analysis. This strategy confirmed published data and brought new insights on tomato flesh and seed composition, thus demonstrating its potential in metabolomics. The compositional changes were related to physiological processes occurring in each tissue. They pointed to (i) some parallel changes at early stages in relation to cell division and transitory storage of carbon, (ii) metabolites participating in the fleshy trait and (iii) metabolites involved in the specific developmental patterns of the seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.