To understand the pathomechanisms of spinal cord injuries will be a prerequisite to develop efficient therapies. By investigating acute lesions of spinal cord white matter in anesthetized mice with fluorescently labeled microglia and axons using in vivo two-photon laser-scanning microscopy (2P-LSM), we identified the messenger nitric oxide (NO) as a modulator of injury-activated microglia. Local tissue damages evoked by high-power laser pulses provoked an immediate attraction of microglial processes. Spinal superfusion with NO synthase and guanylate cyclase inhibitors blocked these extensions. Furthermore, local injection of the NO-donor spermine NONOate (SPNO) or the NO-dependent second messenger cGMP induced efficient migration of microglial cells toward the injection site. High-tissue levels of NO, achieved by uniform superfusion with SPNO and mimicking extended tissue damage, resulted in a fast conversion of the microglial shape from ramified to ameboid indicating cellular activation. When the spinal white matter was preconditioned by increased, ambient ATP (known as a microglial chemoattractant) levels, the attraction of microglial processes to local NO release was augmented, whereas it was abolished at low levels of tissue ATP. Because both signaling molecules, NO and ATP, mediate acute microglial reactions, coordinated pharmacological targeting of NO and purinergic pathways will be an effective mean to influence the innate immune processes after spinal cord injury.
The vesicular glutamate transporter VGLUT1 loads synaptic vesicles with the neurotransmitter glutamate and thereby determines glutamate release at many synapses in the mammalian brain. Due to its function and selective localization, VGLUT1 is one of the most specific markers for glutamatergic synaptic vesicles. It has been used widely to identify glutamatergic synapses, and its expression levels are tightly correlated with changes in quantal size, modulations of synaptic plasticity, and corresponding behaviors. We generated a fluorescent VGLUT1Venus knock-in mouse for the analysis of VGLUT1 and glutamatergic synaptic vesicle trafficking. The mutation does not affect glutamatergic synapse function, and thus the new mouse model represents a universal tool for the analysis of glutamatergic transmitter systems in the forebrain. Previous studies demonstrated synaptic vesicle exchange between terminals in vitro. Using the VGLUT1 Venus knock-in, we show that synaptic vesicles are dynamically shared among boutons in the cortex of mice in vivo. We provide a detailed analysis of synaptic vesicle sharing in vitro, and show that network homeostasis leads to dynamic scaling of synaptic VGLUT1 levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.