International audienceThis paper provides a new method to colorize gray-scale images. While the computation of the luminance channel is directly performed by a linear transformation, the colorization process is an ill-posed problem that requires some priors. In the literature two classes of approach exist. The first class includes manual methods that need the user to manually add colors on the image to colorize. The second class includes exemplar-based approaches where a color image, with a similar semantic content, is provided as input to the method. These two types of priors have their own advantages and drawbacks. In this paper, a new variational framework for exemplar-based colorization is proposed. A nonlocal approach is used to find relevant color in the source image in order to suggest colors on the gray-scale image. The spatial coherency of the result as well as the final color selection is provided by a nonconvex variational framework based on a total variation. An efficient primal-dual algorithm is provided, and a proof of its convergence is proposed. In this work, we also extend the proposed exemplar-based approach to combine both exemplar-based and manual methods. It provides a single framework that unifies advantages of both approaches. Finally, experiments and comparisons with state-of-the-art methods illustrate the efficiency of our proposal. 1. Introduction. The colorization of a gray-scale image consists of adding color information to it. It is useful in the entertainment industry to make old productions more attractive. The reverse operation is based on perceptual assumptions and is today an active research area [28], [13], [37]. Colorization can also be used to add information in order to help further analysis of the image by a user (e.g., sensor fusion [43]). It can also be used for art restoration ; see, e.g., [17] or [41]. It is an old subject that began with the ability of screens and devices to display colors. A seminal approach consists in mapping each level of gray into a color-space [18]. Nevertheless, all colors cannot be recovered without an additional prior. In the existing approaches, priors can be added in two ways: with a direct addition of color o
This paper aims to couple the powerful prediction of the convolutional neural network (CNN) to the accuracy at pixel scale of the variational methods. In this work, the limitations of the CNN-based image colorization approaches are described. We then focus on a CNN which is able to compute a statistical distribution of the colors for each pixel of the image based on a learning stage on a large color image database. After describing its limitation, the variational method of [17] is briefly recalled. This method is able to select a color candidate among a given set while performing regularization of the result. By combining this approach with a CNN, we designed a fully automatic image colorization framework with an improved accuracy in comparison with CNN alone. Some numerical experiments demonstrate the increased accuracy reached by our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.