HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
International audienceLakes are major depositional systems for which the related depositional processes have long been considered relatively simple. Breaking this statement, this study presents a detailed analysis of deposits in Lake Saint-Jean, the third largest natural lake in Québec. In addition to postglacial deltaic and coastal depositional systems fringing the lake, current-controlled features such as a large subaqueous prograding wedge and three sediment drifts have been identifi ed in its central portion based on two-dimensional (2-D) acoustic high-resolution subbottom profiles. The large subaqueous prograding wedge is a 4-km-long and up to 15-m-thick heterolithic shelf-like construction in the southeastern part of the lake. The three sediment drifts are 0.1–0.5-km-long and 2–5-mthick mud mounds distributed on the lake floor in the central portion of the lake. Diatom analyses and radiocarbon dating show that the development of these current-controlled features occurred during the lacustrine phase, after the disconnection with the postglacial marine Laflamme Gulf at 8.5 cal. k.y. B.P. Depositional facies show evidence of recurrent bottom-current activity. Related deposits alternate with pelagic sedimentation stages characterized by the settling of mud and biogenic accumulations. We investigated the origin of bottom currents using a numerical simulation (SYMPHONIE, an oceanographic model), with the aim of modeling wind-induced lake-scale water circulation. Simulations suggest that the subaqueous prograding wedge and the three sediment drifts result from wind-induced bottom currents generated by storm events having wind speed greater than 10 m s–1. Such strong winds are able to significantly affect sedimentation in the central portion of Lake Saint-Jean. Theresulting wind-induced sedimentary features were integrated into a refi ned lacustrine depositional model that summarizes the evolution of a group of water bodies referred to as “wind-driven water bodies.” This study applies a new tool for lake strata characterization and highlights the potential diffi cultyin differentiating them from marine deposits in the geological record
3D hydrodynamic simulations were performed on an area extending 600 km off Taiwan island for the period running from September 2011 to December 2012. We covered a winter Monsoon season and a summer season with 17 typhoons recorded. By comparing simulations and measurements during the TALIM typhoon, our model reproduces correctly the storm surge observed along the Wan-Tzu-Liao sand barrier (South-West Taiwan). By a modelling approach, we analyzed the regional hydrodynamic mechanisms which control the sea surface elevation at the Chung-Chin harbour. Tide is the dominant forcing of the water level with more than 1 meter above the mean sea level. Global currents contribute up to 80 cm to the water level but during the SAOLA typhon, the elevation reached 1 meter. The contribution of atmospheric forcings is lower but it can generate 30 cm of elevation (e.g. during GUCHOL and TALIM typhoons).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.