An increasing number of studies using real-time fMRI neurofeedback have demonstrated that successful regulation of neural activity is possible in various brain regions. Since these studies focused on the regulated region(s), little is known about the target-independent mechanisms associated with neurofeedback-guided control of brain activation, i.e. the regulating network. While the specificity of the activation during self-regulation is an important factor, no study has effectively determined the network involved in self-regulation in general. In an effort to detect regions that are responsible for the act of brain regulation, we performed a post-hoc analysis of data involving different target regions based on studies from different research groups. We included twelve suitable studies that examined nine different target regions amounting to a total of 175 subjects and 899 neurofeedback runs. Data analysis included a standard first- (single subject, extracting main paradigm) and second-level (single subject, all runs) general linear model (GLM) analysis of all participants taking into account the individual timing. Subsequently, at the third level, a random effects model GLM included all subjects of all studies, resulting in an overall mixed effects model. Since four of the twelve studies had a reduced field of view (FoV), we repeated the same analysis in a subsample of eight studies that had a well-overlapping FoV to obtain a more global picture of self-regulation. The GLM analysis revealed that the anterior insula as well as the basal ganglia, notably the striatum, were consistently active during the regulation of brain activation across the studies. The anterior insula has been implicated in interoceptive awareness of the body and cognitive control. Basal ganglia are involved in procedural learning, visuomotor integration and other higher cognitive processes including motivation. The larger FoV analysis yielded additional activations in the anterior cingulate cortex, the dorsolateral and ventrolateral prefrontal cortex, the temporo-parietal area and the visual association areas including the temporo-occipital junction. In conclusion, we demonstrate that several key regions, such as the anterior insula and the basal ganglia, are consistently activated during self-regulation in real-time fMRI neurofeedback independent of the targeted region-of-interest. Our results imply that if the real-time fMRI neurofeedback studies target regions of this regulation network, such as the anterior insula, care should be given whether activation changes are related to successful regulation, or related to the regulation process per se. Furthermore, future research is needed to determine how activation within this regulation network is related to neurofeedback success.
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks.
Recent advances in neurofeedback based on real-time functional magnetic resonance imaging (fMRI) allow for learning to control spatially localized brain activity in the range of millimeters across the entire brain. Realtime fMRI neurofeedback studies have demonstrated the feasibility of self-regulating activation in specific areas that are involved in a variety of functions, such as perception, motor control, language, and emotional processing. In most of these previous studies, participants trained to control activity within one region of interest (ROI). In the present study, we extended the neurofeedback approach by now training healthy participants to control the interhemispheric balance between their left and right visual cortices. This was accomplished by providing feedback based on the difference in activity between a target visual ROI and the corresponding homologue region in the opposite hemisphere. Eight out of 14 participants learned to control the differential feedback signal over the course of 3 neurofeedback training sessions spread over 3 days, i.e., they produced consistent increases in the visual target ROI relative to the opposite visual cortex. Those who learned to control the differential feedback signal were subsequently also able to exert that control in the absence of neurofeedback. Such learning to voluntarily control the balance between cortical areas of the two hemispheres might offer promising rehabilitation approaches for neurological or psychiatric conditions associated with pathological asymmetries in brain activity patterns, such as hemispatial neglect, dyslexia, or mood disorders.
Neurofeedback based on real-time functional magnetic resonance imaging (fMRI) is an emerging technique that allows for learning voluntary control over brain activity. Such brain training has been shown to cause specific behavioral or cognitive enhancements, and even therapeutic effects in neurological and psychiatric patient populations. However, for clinical applications it is important to know if learned self-regulation can be maintained over longer periods of time and whether it transfers to situations without neurofeedback. Here, we present preliminary results from five healthy participants who successfully learned to control their visual cortex activity and who we re-scanned 6 and 14 months after the initial neurofeedback training to perform learned self-regulation. We found that participants achieved levels of self-regulation that were similar to those achieved at the end of the successful initial training, and this without further neurofeedback information. Our results demonstrate that learned self-regulation can be maintained over longer periods of time and causes lasting transfer effects. They thus support the notion that neurofeedback is a promising therapeutic approach whose effects can last far beyond the actual training period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.