Exposure to an acute stressor triggers a complex cascade of neurochemical events in the brain. However, deciphering their individual impact on stress-induced molecular changes remains a major challenge. Here we combine RNA-sequencing with selective pharmacological, chemogenetic and optogenetic manipulations to isolate the contribution of the locus coeruleus - noradrenaline (LN-NA) system to the acute stress response. We reveal that NA-release during stress exposure regulates a large and reproducible set of genes in the dorsal and ventral hippocampus via β-adrenergic receptors. For a smaller subset of these genes, we show that NA release triggered by LC stimulation is sufficient to mimic the stress-induced transcriptional response. We observe these effects in both sexes, independent of the pattern and frequency of LC activation. Using a retrograde optogenetic approach, we demonstrate that hippocampus-projecting LC neurons directly regulate hippocampal gene expression. Overall, a highly selective set of astrocyte-enriched genes emerges as key targets of LC-NA activation, most prominently several subunits of protein phosphatase 1 (Ppp1r3c, Ppp1r3d, Ppp1r3g) and type II iodothyronine deiodinase (Dio2). These results highlight the importance of astrocytic energy metabolism and thyroid hormone signaling in LC mediated hippocampal function, and offer new molecular targets for understanding LC function in health and disease.
The nuanced detection of rodent behavior in preclinical biomedical research is essential for understanding disease conditions, genetic phenotypes, and internal states. Recent advances in machine vision and artificial intelligence have popularized data-driven methods that segment complex animal behavior into clusters of behavioral motifs. However, despite the rapid progress, several challenges remain: Statistical power typically decreases due to multiple testing correction, poor transferability of clustering approaches across experiments limits practical applications, and individual differences in behavior are not considered. Here, we introduce "behavioral flow analysis" (BFA), which creates a single metric for all observed transitions between behavioral motifs. Then, we establish a "classifier-in-the-middle" approach to stabilize clusters and enable transferability of our analyses across datasets. Finally, we combine these approaches with dimensionality reduction techniques, enabling "behavioral flow fingerprinting" (BFF) for individual animal assessment. We validate our approaches across large behavioral datasets with a total of 443 open field recordings that we make publicly available, comparing various stress protocols with pharmacologic and brain-circuit interventions. Our analysis pipeline is compatible with a range of established clustering approaches, it increases statistical power compared to conventional techniques, and has strong reproducibility across experiments within and across laboratories. The efficient individual phenotyping allows us to classify stress-responsiveness and predict future behavior. This approach aligns with animal welfare regulations by reducing animal numbers, and enhancing information extracted from experimental animals
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.