Aims Liver damage remains the most frequent type of adverse drug reaction (ADRs) that can lead to the withdrawal of a drug from the market. The abnormal laboratory data identi®ed by computerized hospital information systems can be used in order to improve the detection of ADRs. Our objectives were to assess the detection and incidence of drug-induced liver abnormalities in a university hospital inpatient population and to evaluate the underreporting rate of drug-induced liver injury. Methods We conducted a prospective study performed 1 week per month from June to October 1997. We selected patients by a computerized process using biochemistry laboratory data, based on serum enzyme values, alanine aminotransferase (over 2 fold normal) and alkaline phosphatase (over 1.5 fold normal). Results Among 1976 ALT and 1814 AP assays performed during the period of the study, 156 (7.9%) and 159 (8.8%) tests, respectively, fell into the selected criteria. These concerne 147 patients. Among these patients, 13 (8.8%) cases of drug-induced liver injuries were suspected. Seven cases were asymptomatic. Six cases were classi®ed as serious by these criteria: hospitalization to investigate the cause of health status impairment (4 patients), prolongation of hospitalization (1 patient) and lifethreathening (1 patient). Using the hospitalization database, the incidence of druginduced liver injuries was estimated as 6.6 per 1000 inpatients a week. Only 1 case was reported by physicians in the same period. Conclusions Computerization of biochemical data would allow the development of systems to improve detection of drug-induced injury. Moreover, underreporting remains important for such potentially serious ADRs, even in a university hospital.
Nursing home (NH) residents and staff have been severely affected by the COVID‐19 pandemic. The aim of this study was to examine the use of weekly saliva RT‐qPCR testing for SARS‐CoV‐2 detection among NH workers as a strategy to control disease transmission within NHs in Belgium. From 16 November to 27 December 2020, a voluntary and anonymous weekly screening was implemented in a cohort of 50,000 workers across 572 NHs in the Walloon region of Belgium to detect asymptomatic cases of SARS‐CoV‐2 via saliva RT‐qPCR testing and using the Diagenode saliva sample collection device. Positive workers were isolated to avoid subsequent infections in residents and other staff. RT‐qPCR testing was based on pooled saliva sampling techniques from three workers, followed by individual testing of each positive or inconclusive pool. The majority of NHs (85%) and 55% of their workers participated. Pooling did not affect sensitivity as it only induced a very decrease in sensitivity estimated as 0.33%. Significant decreases in the prevalence (34.4–13.4%) and incidence of NHs with either single (13.8–2%) or multiple positive workers (3.7–0%) were observed over time. In addition, deaths among NH residents and NH worker absences decreased significantly over time. Weekly saliva RT‐qPCR testing for SARS‐CoV‐2 demonstrated large‐scale feasibility and efficacy in disrupting the chain of transmission. Implementation of this testing strategy in NHs could also be extended to other settings with the aim to control viral transmission for maintaining essential activities.
Background The role played by large-scale repetitive SARS-CoV-2 screening programs within university populations interacting continuously with an urban environment, is unknown. Our objective was to develop a model capable of predicting the dispersion of viral contamination among university populations dividing their time between social and academic environments. Methods Data was collected through real, large-scale testing developed at the University of Liège, Belgium, during the period Sept. 28th-Oct. 29th 2020. The screening, offered to students and staff (n = 30,000), began 2 weeks after the re-opening of the campus but had to be halted after 5 weeks due to an imposed general lockdown. The data was then used to feed a two-population model (University + surrounding environment) implementing a generalized susceptible-exposed-infected-removed compartmental modeling framework. Results The considered two-population model was sufficiently versatile to capture the known dynamics of the pandemic. The reproduction number was estimated to be significantly larger on campus than in the urban population, with a net difference of 0.5 in the most severe conditions. The low adhesion rate for screening (22.6% on average) and the large reproduction number meant the pandemic could not be contained. However, the weekly screening could have prevented 1393 cases (i.e. 4.6% of the university population; 95% CI: 4.4–4.8%) compared to a modeled situation without testing. Conclusion In a real life setting in a University campus, periodic screening could contribute to limiting the SARS-CoV-2 pandemic cycle but is highly dependent on its environment.
Background Nursing home (NH) residents have been severely affected during the COVID-19 pandemic because of their age and underlying comorbidities. Infection and outbreaks in NHs are most likely triggered by infected workers. Screening for asymptomatic NH workers can prevent risky contact and viral transmission to the residents. This study examined the effect of the BNT162b2 mRNA COVID‑19 (Comirnaty®; BioNTech and Pfizer) vaccination on the saliva excretion of SARS-CoV-2 among NH workers, through weekly saliva RT-qPCR testing. Methods A 2-month cohort study was conducted among 99 NHs in the Walloon region (Belgium), at the start of February 2021. Three groups of workers, i.e., non-vaccinated (n = 1618), one-dosed vaccinated (n = 1454), and two-dosed vaccinated (n = 2379) of BNT162b2 mRNA COVID‑19 vaccine, were followed-up weekly. Their saliva samples were used to monitor the shedding of SARS-CoV-2. All positive samples were sequenced and genotyped to identify the circulating wild-type virus or variants of concern. Results The protection fraction against the excretion of the SARS-CoV-2 in the saliva samples of the workers after the second dose is estimated at 0.90 (95% CI: 0.18; 0.99) at 1 week and 0.83 (95% CI: 0.54; 0.95) at 8 weeks. We observe more circulating SARS-CoV-2 and a greater variability of viral loads in the unvaccinated group compared to those of the vaccinated group. Conclusions This field cohort study advances our knowledge of the efficacy of the mRNA BNT162b2 COVID-19 vaccine on the viral shedding in the saliva specimens of vaccinated NH workers, contributing to better decision-making in public health interventions and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.